Toward Efficient Urban Emergency Response Using UAVs Riding Crowdsourced Buses

应急响应 计算机科学 应急管理 灾害应对 众包 计算机网络 计算机安全 万维网 政治学 医学 法学 医疗急救
作者
Junhui Gao,Qianru Wang,Zhigang Li,Xin Zhang,Yujiao Hu,Qingye Han,Qingye Han
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 22439-22455 被引量:2
标识
DOI:10.1109/jiot.2024.3382120
摘要

Unmanned Aerial Vehicles (UAVs) are widely applied in smart city applications such as urban sensing and delivery, due to the UAVs' agility, low cost and not being restricted by ground road conditions. However, the limited battery capacity becomes one of the biggest obstacles to the application of UAVs. To address this issue, this paper investigates an emergency response application, in which UAVs generally ride crowdsourced buses to save energy and respond to a stochastic emergency event (such as a traffic accident) when the event occurs. For the bus-based UAV response paradigm, a single UAV response process with the constraint of the bus mobility is first modeled. Subsequently, a data-driven UAV path planning algorithm is designed. Then two emergency response cases by multi-UAV are investigated. One case is irregular emergency response, whose objective is to maximize the temporal-spatial coverage of the urban area. The other case is predictable emergency response, which optimizes the response performance to these emergencies. Thereafter, the bus-stimulating problems for the two cases are formulated and solved. Finally, utilizing a real-world bus trajectory dataset generated by a large-scale bus fleet and a traffic event dataset, the emergency response performance of the bus-based UAV response paradigm is comprehensively evaluated. The results show that (1) with only 30 UAVs, 90% of Shenzhen city can be covered in the irregular emergency response case; (2) with only 50 UAVs, the average response delay to the emergencies is shorter than 1.5 minutes, which is 56% shorter than baselines, in the predictable emergencies response case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助奈何采纳,获得10
刚刚
刚刚
汉堡包应助hao采纳,获得10
刚刚
迢迢万里发布了新的文献求助10
刚刚
Austin完成签到,获得积分10
1秒前
1秒前
1518发布了新的文献求助10
2秒前
情怀应助DDdaisiki采纳,获得10
2秒前
顺利松鼠关注了科研通微信公众号
2秒前
苯二氮卓发布了新的文献求助10
2秒前
zzc发布了新的文献求助10
2秒前
田様应助hurry采纳,获得10
3秒前
小晶豆发布了新的文献求助10
3秒前
sansan完成签到 ,获得积分10
3秒前
小布丁完成签到 ,获得积分10
4秒前
噜啦啦发布了新的文献求助10
4秒前
巴吉完成签到 ,获得积分10
4秒前
mjj发布了新的文献求助10
4秒前
善良友安发布了新的文献求助10
4秒前
Yola发布了新的文献求助10
4秒前
NexusExplorer应助hhc采纳,获得10
5秒前
缓慢的梦山完成签到,获得积分20
5秒前
5秒前
5秒前
Jack完成签到,获得积分10
6秒前
Yohok完成签到,获得积分10
6秒前
领导范儿应助tan90采纳,获得10
6秒前
景Jing完成签到,获得积分10
6秒前
6秒前
zzc完成签到,获得积分10
8秒前
8秒前
8秒前
小晶豆完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
李健的小迷弟应助Mark采纳,获得20
10秒前
bbl完成签到,获得积分10
10秒前
11秒前
李健的粉丝团团长应助伈X采纳,获得10
11秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919