Deep Learning and Machine Learning Techniques for Credit Scoring: A Review

计算机科学 人工智能 机器学习 自然语言处理
作者
Hana Demma Wube,Sintayehu Zekarias Esubalew,Firesew Fayiso Weldesellasie,Taye Girma Debelee
出处
期刊:Communications in computer and information science 卷期号:: 30-61
标识
DOI:10.1007/978-3-031-57639-3_2
摘要

Credit scoring is one of the most important credit decision-making in banking institutions by collecting, analyzing, and classifying various credit elements and variables of customer financial data. Nowadays, there is an increase in research related to machine learning (ML) and deep learning models (DL) to improve accuracy. This has led to the emergence of various ML and DL methods as a core practice in the field of credit scoring using various datasets. The aim of this study is to provide in-depth insights on various ML and DL-based credit scoring techniques. For this purpose, articles published between 2018 and 2023 were systematically reviewed by formulating research questions, defining search terms, and filtering articles using predefined inclusion and exclusion criteria. In particular, the reported model type, dataset, key performance parameters, publication profile, and keywords were extracted, and then the results of the identified models were examined. Finally, the most important aspects of the DL and ML methods in credit scoring were discussed. It was noticed that the performance of ML and DL-based credit scoring models has generally been evaluated using accuracy and area under curve. It was also observed that the UCI datasets have been used as a benchmark in the development of advanced credit scoring algorithms. The study also shows that comparing the performance of DL and ML models for credit is difficult due to the heterogeneity of the reported performance metrics. Hybrid and ensemble model based credit scoring techniques are becoming more popular and are the most commonly used credit scoring model. Further, the gaps and future research directions were highlighted. This review is expected to serve as an up-to-date and comprehensive reference for interested researchers seeking to quickly understand the current progress in DL and ML methods for credit scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赤子白仙完成签到,获得积分10
2秒前
2秒前
ash发布了新的文献求助10
3秒前
3秒前
欣喜的姒发布了新的文献求助10
4秒前
彳亍1117应助shilong.yang采纳,获得20
4秒前
小洋同学可能不在完成签到,获得积分10
4秒前
Summer应助shilong.yang采纳,获得20
4秒前
5秒前
杏林靴子完成签到,获得积分10
5秒前
czephyr发布了新的文献求助10
6秒前
7秒前
7秒前
啊富汗发布了新的文献求助30
8秒前
8秒前
8秒前
10秒前
10秒前
kuku发布了新的文献求助10
11秒前
yuanan完成签到,获得积分10
11秒前
11秒前
11秒前
czc发布了新的文献求助10
11秒前
我的饭饭饭完成签到,获得积分20
11秒前
iNk应助安静的小白菜采纳,获得20
11秒前
孙文远发布了新的文献求助10
12秒前
13秒前
苏卿应助苗老九采纳,获得10
13秒前
Limiao完成签到,获得积分10
13秒前
受伤的迎松完成签到 ,获得积分10
14秒前
14秒前
丘比特应助lulu采纳,获得10
14秒前
15秒前
紫金之恋完成签到,获得积分10
16秒前
16秒前
Lisa_Su_8055发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152811
求助须知:如何正确求助?哪些是违规求助? 2804001
关于积分的说明 7856700
捐赠科研通 2461757
什么是DOI,文献DOI怎么找? 1310484
科研通“疑难数据库(出版商)”最低求助积分说明 629243
版权声明 601782