An empirical study of Multimodal Entity-Based Sentiment Analysis with ChatGPT: Improving in-context learning via entity-aware contrastive learning

计算机科学 背景(考古学) 情绪分析 自然语言处理 实体链接 对比分析 实证研究 人工智能 情报检索 语言学 知识库 古生物学 哲学 认识论 生物
作者
Li Yang,Zengzhi Wang,Ziyan Li,Jin‐Cheon Na,Jianfei Yu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (4): 103724-103724 被引量:23
标识
DOI:10.1016/j.ipm.2024.103724
摘要

Multimodal Entity-Based Sentiment Analysis (MEBSA) is an emerging task within sentiment analysis, with the objective of simultaneously detecting entity, sentiment, and entity category from multimodal inputs. Despite achieving promising results, most existing MEBSA studies requires a substantial quantity of annotated data. The acquisition of such data is both costly and time-intensive in practical applications. To alleviate the reliance on annotated data, this work explores the potential of in-context learning (ICL) with a representative large language model, ChatGPT, for the MEBSA task. Specifically, we develop a general ICL framework with task instructions for zero-shot learning, followed by extending it to few-shot learning by incorporating a few demonstration samples in the prompt. To enhance the performance of the ICL framework in the few-shot learning setting, we further develop an Entity-Aware Contrastive Learning model to effectively retrieve demonstration samples that are similar to each test sample. Experiments demonstrate that our developed ICL framework exhibits superior performance over other baseline ICL methods, and is comparable to or even outperforms many existing fine-tuned methods on four MEBSA subtasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助www采纳,获得10
1秒前
kui__wang发布了新的文献求助10
1秒前
飞飞飞发布了新的文献求助20
1秒前
核桃发布了新的文献求助10
1秒前
killer发布了新的文献求助10
2秒前
江夏发布了新的文献求助10
2秒前
基金中中中完成签到,获得积分10
3秒前
英姑应助雷雷采纳,获得10
3秒前
3秒前
4秒前
5秒前
5秒前
不羁之魂发布了新的文献求助10
5秒前
一希完成签到,获得积分20
6秒前
黄臻完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
李小颜完成签到 ,获得积分10
8秒前
8秒前
黄臻发布了新的文献求助10
8秒前
英勇白猫发布了新的文献求助10
9秒前
9秒前
心秦发布了新的文献求助10
9秒前
赘婿应助漂亮的孤丹采纳,获得10
10秒前
summerer发布了新的文献求助10
10秒前
西瓜妹发布了新的文献求助10
10秒前
温匕发布了新的文献求助100
10秒前
medmh完成签到,获得积分10
11秒前
芒果发布了新的文献求助10
11秒前
田博妍发布了新的文献求助10
11秒前
lin发布了新的文献求助10
12秒前
李爱国应助王钢铁采纳,获得10
13秒前
科目三应助心脏杀手采纳,获得10
14秒前
熙欢发布了新的文献求助20
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675794
求助须知:如何正确求助?哪些是违规求助? 4949173
关于积分的说明 15154796
捐赠科研通 4835088
什么是DOI,文献DOI怎么找? 2589854
邀请新用户注册赠送积分活动 1543583
关于科研通互助平台的介绍 1501336