Efficient progressive aggregation enhancement network for defect detection

计算机科学 材料科学
作者
Kai Yu,Haoyan Zhang,Wentao Lyu,Qing Guo,Zhili Deng,Weiqiang Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adbf86
摘要

Abstract Computer vision-based deep learning models are of great significance in industrial defect quality detection. Unlike natural objects, defects in industrial products are typically quite small and exhibit highly uneven scales, resulting in suboptimal performance of conventional object detectors when encountered with complex defect detection. Hence, this paper introduces an efficient progressive aggregation enhanced network (EPAE-Net) with the goal of strengthening defect detection performance in complex scenarios. Firstly, a global context feature enhancement module (GCFEM) was designed to model the global context of images, enhancing the model’s ability to perceive key information. Secondly, a downsampling module was designed using self calibrated convolution to improve the detection performance of small targets. Subsequently, a multi-path aggregation module (MAM) was designed to further enhance the interaction between cross layer features, MAM enhanced the network’s ability to detect extreme aspect ratio defects by integrating multi-scale convolutional attention (MSCA) mechanisms. A multi-path aggregation feature pyramid network (FPN) was constructed using MAM, and adaptive spatial feature fusion was used to gradually integrate low-level features and alleviate interference caused by information conflicts during the fusion process. Finally, the efficient complete intersection over union (E-CIOU) loss function is introduced to refine the network and further enhance the performance of network defect detection.Experimental results obtained from three distinct industrial datasets, namely the Tianchi fabric dataset (achieved an mean average precision (mAP) of 77.1%), the printed circuit board (PCB) dataset (achieved an mAP of 98.7%), and the surface defect dataset of steel strip (NEU-DET dataset) (achieved an mAP of 81.5%), unequivocally demonstrate that the proposed EPAE-Net yields competitive outcomes when compared to other state-of-the-art methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
执着的紫完成签到,获得积分10
刚刚
no发布了新的文献求助10
刚刚
刚刚
敏感板栗完成签到,获得积分10
1秒前
木染发布了新的文献求助30
1秒前
划水的鱼完成签到,获得积分10
2秒前
平常的毛豆应助蛋宝采纳,获得10
2秒前
DJMZ完成签到,获得积分10
2秒前
1234567发布了新的文献求助10
3秒前
3秒前
3秒前
sdnihbhew发布了新的文献求助10
3秒前
rx发布了新的文献求助10
4秒前
5秒前
XIXI发布了新的文献求助10
5秒前
zhang完成签到,获得积分20
6秒前
6秒前
现代柠檬完成签到,获得积分10
7秒前
爆米花应助郦涔采纳,获得10
7秒前
DD发布了新的文献求助10
8秒前
Jolene完成签到,获得积分10
8秒前
爆米花应助梧桐雨210采纳,获得10
8秒前
8秒前
复方黄桃干完成签到 ,获得积分10
9秒前
Lyn完成签到 ,获得积分10
9秒前
9秒前
深情安青应助Lorain采纳,获得10
10秒前
10秒前
包容的剑完成签到 ,获得积分10
10秒前
SciGPT应助波安班采纳,获得10
10秒前
WWWUBING完成签到,获得积分10
10秒前
Wangboyang完成签到,获得积分10
11秒前
11秒前
天真怜晴完成签到,获得积分10
11秒前
laphong发布了新的文献求助30
11秒前
gggja完成签到,获得积分10
12秒前
Owen应助XIXI采纳,获得10
12秒前
saury完成签到,获得积分20
12秒前
阿梨完成签到 ,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767607
求助须知:如何正确求助?哪些是违规求助? 3312246
关于积分的说明 10162904
捐赠科研通 3027595
什么是DOI,文献DOI怎么找? 1661595
邀请新用户注册赠送积分活动 794164
科研通“疑难数据库(出版商)”最低求助积分说明 756002