Efficient progressive aggregation enhancement network for defect detection

计算机科学 材料科学
作者
Kai Yu,Haoyan Zhang,Wentao Lyu,Qing Guo,Zhili Deng,Weiqiang Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adbf86
摘要

Abstract Computer vision-based deep learning models are of great significance in industrial defect quality detection. Unlike natural objects, defects in industrial products are typically quite small and exhibit highly uneven scales, resulting in suboptimal performance of conventional object detectors when encountered with complex defect detection. Hence, this paper introduces an efficient progressive aggregation enhanced network (EPAE-Net) with the goal of strengthening defect detection performance in complex scenarios. Firstly, a global context feature enhancement module (GCFEM) was designed to model the global context of images, enhancing the model’s ability to perceive key information. Secondly, a downsampling module was designed using self calibrated convolution to improve the detection performance of small targets. Subsequently, a multi-path aggregation module (MAM) was designed to further enhance the interaction between cross layer features, MAM enhanced the network’s ability to detect extreme aspect ratio defects by integrating multi-scale convolutional attention (MSCA) mechanisms. A multi-path aggregation feature pyramid network (FPN) was constructed using MAM, and adaptive spatial feature fusion was used to gradually integrate low-level features and alleviate interference caused by information conflicts during the fusion process. Finally, the efficient complete intersection over union (E-CIOU) loss function is introduced to refine the network and further enhance the performance of network defect detection.Experimental results obtained from three distinct industrial datasets, namely the Tianchi fabric dataset (achieved an mean average precision (mAP) of 77.1%), the printed circuit board (PCB) dataset (achieved an mAP of 98.7%), and the surface defect dataset of steel strip (NEU-DET dataset) (achieved an mAP of 81.5%), unequivocally demonstrate that the proposed EPAE-Net yields competitive outcomes when compared to other state-of-the-art methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑对人生完成签到 ,获得积分10
9秒前
wangjing11完成签到,获得积分10
12秒前
王昭完成签到 ,获得积分10
12秒前
浊轶完成签到 ,获得积分10
12秒前
16秒前
dream完成签到 ,获得积分10
18秒前
阿六儿完成签到,获得积分10
20秒前
阿九发布了新的文献求助10
23秒前
明眸完成签到 ,获得积分10
25秒前
舒心的雍发布了新的文献求助10
26秒前
yaomax完成签到 ,获得积分10
26秒前
十月天秤完成签到,获得积分10
29秒前
柒柒球完成签到 ,获得积分10
33秒前
长弓诘完成签到 ,获得积分10
37秒前
阿九完成签到,获得积分10
42秒前
薏米人儿完成签到 ,获得积分10
45秒前
鲁滨逊完成签到 ,获得积分10
46秒前
哈利波特完成签到,获得积分10
46秒前
完美世界应助不如无言采纳,获得10
54秒前
风雪夜归人完成签到 ,获得积分10
58秒前
燕子完成签到,获得积分10
1分钟前
芷兰丁香完成签到,获得积分10
1分钟前
哆啦A梦完成签到,获得积分10
1分钟前
徐向成发布了新的文献求助10
1分钟前
HHW发布了新的文献求助10
1分钟前
年轻薯片完成签到 ,获得积分10
1分钟前
xing完成签到,获得积分10
1分钟前
beikou完成签到 ,获得积分10
1分钟前
秋半梦完成签到,获得积分10
1分钟前
B_lue完成签到 ,获得积分10
1分钟前
壮观的雪晴完成签到 ,获得积分10
1分钟前
俊逸的盛男完成签到 ,获得积分10
1分钟前
整齐豆芽完成签到 ,获得积分10
1分钟前
LMF完成签到 ,获得积分10
1分钟前
CASLSD完成签到 ,获得积分10
1分钟前
Aurora.H完成签到,获得积分10
1分钟前
隐形白开水完成签到,获得积分0
1分钟前
敏感的文龙完成签到,获得积分10
1分钟前
小小完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866664
求助须知:如何正确求助?哪些是违规求助? 6425691
关于积分的说明 15654751
捐赠科研通 4981593
什么是DOI,文献DOI怎么找? 2686692
邀请新用户注册赠送积分活动 1629499
关于科研通互助平台的介绍 1587508