已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remaining useful life prediction of motor bearings based on slow feature analysis-assisted attention mechanism and dual-LSTM networks

对偶(语法数字) 机制(生物学) 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 物理 艺术 语言学 哲学 文学类 量子力学
作者
Zhang Wan,Xiaogang Zhang,Xiaoan Yan,Yadong Xu,Jun Cai
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217251324103
摘要

As the fundamental component of a motor, bearings primarily serve the roles of supporting the guide shaft and minimizing equipment friction. Presently, deep learning models exhibit automatic feature acquisition capabilities and deliver commendable results in predicting the remaining useful life (RUL) of motor bearings. However, these deep learning models tend to overlook the slow-changing dynamics of low-frequency information embedded within mechanical dynamic behavior. To address the aforementioned challenges, we propose a novel approach: an RUL prediction model that incorporates a slow feature analysis-assisted attention mechanism with dual long short-term memory (dual-LSTM) networks. First, slow-changing features are decomposed on the basis of the automatic features extracted by the autoencoding model, enhancing the ability to capture the overall trend of changes in the full-life cycle of the rolling bearing. Second, slow features and features extracted via autoencoder are amalgamated to construct a multi-dimensional feature matrix. This matrix is subsequently inputted into a multi-head attention mechanism and dual-LSTM network model, dynamically selecting features with higher relevance, thereby enhancing the accuracy of RUL prediction. Additionally, the maximum mean discrepancy loss is incorporated into the loss function to mitigate the distribution differences between the training and test datasets. The effectiveness and superiority of the algorithm are validated using the IEEE 2012 PHM challenge and ALT-1A datasets. The results indicate that the proposed approach outperforms existing methods, providing a novel solution for RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
个性冰海发布了新的文献求助10
6秒前
6秒前
蓝色的鱼发布了新的文献求助10
7秒前
dd发布了新的文献求助10
7秒前
jml完成签到,获得积分10
9秒前
cong完成签到 ,获得积分10
11秒前
虚幻笑晴发布了新的文献求助10
14秒前
LMX完成签到 ,获得积分10
14秒前
个性冰海完成签到,获得积分20
16秒前
01关闭了01文献求助
17秒前
牛初辰完成签到 ,获得积分10
20秒前
22秒前
蓝色的鱼完成签到,获得积分10
23秒前
高高亦竹完成签到,获得积分10
24秒前
28秒前
虚幻笑晴发布了新的文献求助10
29秒前
小雨点Logan完成签到,获得积分10
29秒前
谦让的含海应助dd采纳,获得10
32秒前
哲别发布了新的文献求助10
33秒前
37秒前
默默善愁发布了新的文献求助10
41秒前
顾矜应助默默善愁采纳,获得10
47秒前
50秒前
闪闪的梦槐完成签到 ,获得积分10
51秒前
xiaoya927217发布了新的文献求助10
55秒前
55秒前
55秒前
汉堡包应助科研通管家采纳,获得10
56秒前
56秒前
ding应助科研通管家采纳,获得10
56秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
浮游应助科研通管家采纳,获得10
56秒前
myg123完成签到 ,获得积分10
59秒前
nenoaowu发布了新的文献求助10
1分钟前
刘123完成签到,获得积分10
1分钟前
浮游应助Wangyingjie5采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524