Remaining useful life prediction of motor bearings based on slow feature analysis-assisted attention mechanism and dual-LSTM networks

对偶(语法数字) 机制(生物学) 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 物理 艺术 语言学 量子力学 文学类 哲学
作者
Zhang Wan,Xiaogang Zhang,Xiaoan Yan,Yadong Xu,Jun Cai
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217251324103
摘要

As the fundamental component of a motor, bearings primarily serve the roles of supporting the guide shaft and minimizing equipment friction. Presently, deep learning models exhibit automatic feature acquisition capabilities and deliver commendable results in predicting the remaining useful life (RUL) of motor bearings. However, these deep learning models tend to overlook the slow-changing dynamics of low-frequency information embedded within mechanical dynamic behavior. To address the aforementioned challenges, we propose a novel approach: an RUL prediction model that incorporates a slow feature analysis-assisted attention mechanism with dual long short-term memory (dual-LSTM) networks. First, slow-changing features are decomposed on the basis of the automatic features extracted by the autoencoding model, enhancing the ability to capture the overall trend of changes in the full-life cycle of the rolling bearing. Second, slow features and features extracted via autoencoder are amalgamated to construct a multi-dimensional feature matrix. This matrix is subsequently inputted into a multi-head attention mechanism and dual-LSTM network model, dynamically selecting features with higher relevance, thereby enhancing the accuracy of RUL prediction. Additionally, the maximum mean discrepancy loss is incorporated into the loss function to mitigate the distribution differences between the training and test datasets. The effectiveness and superiority of the algorithm are validated using the IEEE 2012 PHM challenge and ALT-1A datasets. The results indicate that the proposed approach outperforms existing methods, providing a novel solution for RUL prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
lx完成签到,获得积分10
刚刚
Uaena应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
evz应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
ChenWen完成签到,获得积分10
1秒前
寒月如雪发布了新的文献求助10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
111应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得30
2秒前
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
YangChunyan完成签到,获得积分10
2秒前
一一一应助陈平安采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
斯文败类应助L77采纳,获得10
3秒前
5秒前
凤头鹅几完成签到,获得积分10
5秒前
wq完成签到 ,获得积分10
5秒前
孙大大完成签到,获得积分20
5秒前
溫蒂发布了新的文献求助10
6秒前
宋羽完成签到,获得积分20
6秒前
吕凯强发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957