亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multidimensional Emotional Analysis Technology for Social Media Based on Viewpoint Extraction

社会化媒体 计算机科学 情绪分析 数据科学 心理学 万维网 人工智能
作者
Meng Zhang,H Li,Wei Yang
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s021964922550011x
摘要

With the global popularity of social media, how to effectively analyse the massive text data generated on these platforms to better understand users’ emotions and perspectives has become an important research direction. This study proposes a multidimensional sentiment analysis technique based on viewpoint extraction to overcome the shortcomings of traditional sentiment analysis methods in capturing emotional diversity and complexity. First, the study collects text data from various social media platforms, and after cleaning and preprocessing, constructs a sentiment analysis model that includes both serial and hybrid networks. In serial networks, a multi-layer architecture is adopted, including bidirectional encoders, convolutional neural networks, and bidirectional long short-term memory networks, to extract text features in an orderly manner. The hybrid network integrates the feature representations of different models and introduces a dual attention mechanism to enhance the ability to recognise evaluation objects and viewpoint holders. The results demonstrated that the proposed method exhibited enhanced accuracy, with improvements ranging from 1.51% to 0.96% in comparison to other serial or parallel models, and from 9.09% in comparison to other models. Introducing a dual attention mechanism significantly improves the accuracy of sentiment information extraction, with a performance improvement of about 5-6% compared to using only ordinary algorithms. This further substantiates the pivotal role of hierarchical feature extraction. Finally, the research findings provide a new perspective for social media sentiment analysis, which is expected to play an important role in practical applications such as marketing and public opinion monitoring. Further research will be conducted with the aim of expanding the data sample to enhance the model’s generalisation ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助世界需要我采纳,获得10
1秒前
长言完成签到 ,获得积分10
5秒前
9秒前
徐志豪发布了新的文献求助10
11秒前
圈哥完成签到 ,获得积分10
12秒前
14秒前
得分发布了新的文献求助10
21秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
28秒前
传奇3应助G1采纳,获得10
28秒前
FashionBoy应助读书的时候采纳,获得10
30秒前
田様应助Re采纳,获得10
32秒前
yhl完成签到 ,获得积分10
33秒前
可一可再完成签到 ,获得积分10
38秒前
Matberry完成签到 ,获得积分10
39秒前
852应助爱做实验的泡利采纳,获得10
41秒前
碧蓝巧荷完成签到 ,获得积分10
42秒前
33333完成签到 ,获得积分10
45秒前
chongziccc完成签到 ,获得积分10
50秒前
52秒前
张维发布了新的文献求助10
56秒前
冷风完成签到 ,获得积分10
1分钟前
无花果应助读书的时候采纳,获得30
1分钟前
1分钟前
Lemon完成签到 ,获得积分10
1分钟前
张维完成签到,获得积分10
1分钟前
炙热的夜雪完成签到 ,获得积分10
1分钟前
Gryff完成签到 ,获得积分10
1分钟前
安静含卉发布了新的文献求助10
1分钟前
mmyhn完成签到,获得积分10
1分钟前
1分钟前
1分钟前
老黑完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
木木发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739130
求助须知:如何正确求助?哪些是违规求助? 5384111
关于积分的说明 15339445
捐赠科研通 4881845
什么是DOI,文献DOI怎么找? 2623962
邀请新用户注册赠送积分活动 1572643
关于科研通互助平台的介绍 1529394