Multidimensional Emotional Analysis Technology for Social Media Based on Viewpoint Extraction

社会化媒体 计算机科学 情绪分析 数据科学 心理学 万维网 人工智能
作者
Meng Zhang,H Li,Wei Yang
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s021964922550011x
摘要

With the global popularity of social media, how to effectively analyse the massive text data generated on these platforms to better understand users’ emotions and perspectives has become an important research direction. This study proposes a multidimensional sentiment analysis technique based on viewpoint extraction to overcome the shortcomings of traditional sentiment analysis methods in capturing emotional diversity and complexity. First, the study collects text data from various social media platforms, and after cleaning and preprocessing, constructs a sentiment analysis model that includes both serial and hybrid networks. In serial networks, a multi-layer architecture is adopted, including bidirectional encoders, convolutional neural networks, and bidirectional long short-term memory networks, to extract text features in an orderly manner. The hybrid network integrates the feature representations of different models and introduces a dual attention mechanism to enhance the ability to recognise evaluation objects and viewpoint holders. The results demonstrated that the proposed method exhibited enhanced accuracy, with improvements ranging from 1.51% to 0.96% in comparison to other serial or parallel models, and from 9.09% in comparison to other models. Introducing a dual attention mechanism significantly improves the accuracy of sentiment information extraction, with a performance improvement of about 5-6% compared to using only ordinary algorithms. This further substantiates the pivotal role of hierarchical feature extraction. Finally, the research findings provide a new perspective for social media sentiment analysis, which is expected to play an important role in practical applications such as marketing and public opinion monitoring. Further research will be conducted with the aim of expanding the data sample to enhance the model’s generalisation ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助hhh采纳,获得10
刚刚
空巷完成签到,获得积分20
1秒前
冷酷新柔发布了新的文献求助10
1秒前
123完成签到,获得积分10
2秒前
zouyingjie完成签到,获得积分10
2秒前
2秒前
Gj发布了新的文献求助10
2秒前
风笛完成签到 ,获得积分10
2秒前
可爱的函函应助美满雨莲采纳,获得10
2秒前
3秒前
Cq完成签到,获得积分20
4秒前
kgy发布了新的文献求助10
4秒前
SilentRP完成签到,获得积分10
4秒前
5秒前
可耐的寒松完成签到,获得积分10
6秒前
6秒前
Jasper应助yyygc采纳,获得10
6秒前
水豚完成签到,获得积分10
6秒前
赵欣关注了科研通微信公众号
7秒前
momo应助Annihilating采纳,获得10
7秒前
脑洞疼应助Cq采纳,获得30
8秒前
大模型应助Xin采纳,获得10
9秒前
9秒前
gwh68964402gwh完成签到,获得积分10
9秒前
9秒前
能干冰露完成签到,获得积分10
9秒前
小合发布了新的文献求助10
9秒前
zoey发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
小鱼发布了新的文献求助10
12秒前
berg发布了新的文献求助10
13秒前
13秒前
皮皮完成签到 ,获得积分10
14秒前
情怀应助neurojie采纳,获得10
15秒前
111发布了新的文献求助10
15秒前
15秒前
wang_wj完成签到 ,获得积分10
15秒前
大模型应助自信的泥猴桃采纳,获得10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4017023
求助须知:如何正确求助?哪些是违规求助? 3557119
关于积分的说明 11323948
捐赠科研通 3289980
什么是DOI,文献DOI怎么找? 1812637
邀请新用户注册赠送积分活动 888165
科研通“疑难数据库(出版商)”最低求助积分说明 812158