亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multidimensional Emotional Analysis Technology for Social Media Based on Viewpoint Extraction

社会化媒体 计算机科学 情绪分析 数据科学 心理学 万维网 人工智能
作者
Meng Zhang,H Li,Wei Yang
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s021964922550011x
摘要

With the global popularity of social media, how to effectively analyse the massive text data generated on these platforms to better understand users’ emotions and perspectives has become an important research direction. This study proposes a multidimensional sentiment analysis technique based on viewpoint extraction to overcome the shortcomings of traditional sentiment analysis methods in capturing emotional diversity and complexity. First, the study collects text data from various social media platforms, and after cleaning and preprocessing, constructs a sentiment analysis model that includes both serial and hybrid networks. In serial networks, a multi-layer architecture is adopted, including bidirectional encoders, convolutional neural networks, and bidirectional long short-term memory networks, to extract text features in an orderly manner. The hybrid network integrates the feature representations of different models and introduces a dual attention mechanism to enhance the ability to recognise evaluation objects and viewpoint holders. The results demonstrated that the proposed method exhibited enhanced accuracy, with improvements ranging from 1.51% to 0.96% in comparison to other serial or parallel models, and from 9.09% in comparison to other models. Introducing a dual attention mechanism significantly improves the accuracy of sentiment information extraction, with a performance improvement of about 5-6% compared to using only ordinary algorithms. This further substantiates the pivotal role of hierarchical feature extraction. Finally, the research findings provide a new perspective for social media sentiment analysis, which is expected to play an important role in practical applications such as marketing and public opinion monitoring. Further research will be conducted with the aim of expanding the data sample to enhance the model’s generalisation ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小波完成签到 ,获得积分10
21秒前
共享精神应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
林鹏达发布了新的文献求助10
2分钟前
Zn应助冬天好大的雨采纳,获得10
3分钟前
Leon应助科研通管家采纳,获得20
3分钟前
3分钟前
4分钟前
留白发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
慕青应助科研通管家采纳,获得10
5分钟前
6分钟前
森予发布了新的文献求助10
6分钟前
默默的阑悦完成签到,获得积分10
7分钟前
下一块蛋糕完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
科研通AI5应助默默的阑悦采纳,获得10
8分钟前
ASZXDW发布了新的文献求助10
8分钟前
9分钟前
Himejima完成签到,获得积分0
9分钟前
玛琳卡迪马完成签到,获得积分10
9分钟前
科研通AI5应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
wendy发布了新的文献求助10
9分钟前
10分钟前
布布发布了新的文献求助30
10分钟前
ding应助wendy采纳,获得10
10分钟前
盐植物应助张清采纳,获得10
10分钟前
布布完成签到,获得积分10
10分钟前
华仔应助布布采纳,获得10
10分钟前
Leon应助科研通管家采纳,获得20
11分钟前
Leon应助科研通管家采纳,获得20
11分钟前
Leon应助科研通管家采纳,获得20
11分钟前
12分钟前
12分钟前
彭于晏应助计时器响了采纳,获得30
12分钟前
江文完成签到,获得积分20
12分钟前
12分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544455
求助须知:如何正确求助?哪些是违规求助? 3121630
关于积分的说明 9348120
捐赠科研通 2819909
什么是DOI,文献DOI怎么找? 1550514
邀请新用户注册赠送积分活动 722559
科研通“疑难数据库(出版商)”最低求助积分说明 713273