Cross-media vehicles, which combine the advantages of airplanes and submarines, are capable of performing complex tasks in different media and have attracted significant interest in recent years. In practice, however, cross-media rotorcrafts face numerous challenges during the cross-media transition, one of which is the complex mixed air–water flows induced by their rotors operating in close proximity to the water surface. These flows can result in aerodynamic penalties and structural damage to the rotors. The interactions between a water surface and a rotor wake bring about potential risks of cross-media locomotion, which is known as the near-water effect of rotors. Given that the distinctions between the near-water effect and the ground effect of rotors are not yet widely understood, this study details the discovery of the near-water effect and provides a comprehensive review of the evolutionary development of the near-water effect, tracing its understanding from the ground effect to the influence of droplets through aerodynamic modeling, numerical simulations, and near-water experimental studies. Furthermore, open problems and challenges associated with the near-water effect are discussed, including flow field measurements and numerical simulation approaches. Additionally, potential applications of the near-water effect for the development of cross-media rotorcraft are also described, which are valuable for aerodynamic design and cross-media control.