亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leveraging deep learning for plant disease and pest detection: a comprehensive review and future directions

有害生物分析 植物病害 生物 计算机科学 人工智能 数据科学 生物技术 植物
作者
Muhammad Shoaib,Abolghasem Sadeghi‐Niaraki,Farman Ali,Irfan Hussain,Shah Khalid
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fpls.2025.1538163
摘要

Plant diseases and pests pose significant threats to crop yield and quality, prompting the exploration of digital image processing techniques for their detection. Recent advancements in deep learning models have shown remarkable progress in this domain, outperforming traditional methods across various fronts including classification, detection, and segmentation networks. This review delves into recent research endeavors focused on leveraging deep learning for detecting plant and pest diseases, reflecting a burgeoning interest among researchers in artificial intelligence-driven approaches for agricultural analysis. The study begins by elucidating the limitations of conventional detection methods, setting the stage for exploring the challenges and opportunities inherent in deploying deep learning in real-world applications for plant disease and pest infestation detection. Moreover, the review offers insights into potential solutions while critically analyzing the obstacles encountered. Furthermore, it conducts a meticulous examination and prognostication of the trajectory of deep learning models in plant disease and pest infestation detection. Through this comprehensive analysis, the review seeks to provide a nuanced understanding of the evolving landscape and prospects in this vital area of agricultural research. The review highlights that state-of-the-art deep learning models have achieved impressive accuracies, with classification tasks often exceeding 95% and detection and segmentation networks demonstrating precision rates above 90% in identifying plant diseases and pest infestations. These findings underscore the transformative potential of deep learning in revolutionizing agricultural diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
慕青应助豆豆采纳,获得100
18秒前
xiaosui完成签到 ,获得积分10
37秒前
xiaozou55完成签到 ,获得积分10
1分钟前
cdercder应助Lin采纳,获得30
2分钟前
2分钟前
2分钟前
三井库里发布了新的文献求助10
2分钟前
2分钟前
Jasper应助三井库里采纳,获得10
2分钟前
3分钟前
3分钟前
科研通AI2S应助yangluyao采纳,获得10
3分钟前
3分钟前
4分钟前
留白完成签到 ,获得积分10
4分钟前
4分钟前
orixero应助紫津采纳,获得10
5分钟前
5分钟前
紫津发布了新的文献求助10
5分钟前
5分钟前
5分钟前
longxingbo发布了新的文献求助30
5分钟前
三井库里发布了新的文献求助10
5分钟前
科研通AI5应助三井库里采纳,获得10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
6分钟前
6分钟前
Songlin应助Murphy采纳,获得10
6分钟前
邹醉蓝完成签到,获得积分10
7分钟前
打打应助柏特瑞采纳,获得10
7分钟前
研友_nVWP2Z完成签到 ,获得积分10
7分钟前
7分钟前
Songlin关注了科研通微信公众号
7分钟前
柏特瑞完成签到,获得积分10
7分钟前
柏特瑞发布了新的文献求助10
7分钟前
weiwei完成签到,获得积分10
8分钟前
8分钟前
李健应助柏特瑞采纳,获得10
8分钟前
8分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477472
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110158
捐赠科研通 2760407
什么是DOI,文献DOI怎么找? 1514892
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699604