Rapid charge transfer in covalent organic framework via through-bond for enhanced photocatalytic CO2 reduction

光催化 卟啉 共价键 人工光合作用 X射线光电子能谱 联吡啶 化学 光敏剂 光化学 电子转移 化学工程 无机化学 有机化学 催化作用 工程类 晶体结构
作者
Lijuan Gong,Li-Yao Liu,Shao–Shuai Zhao,Shuailong Yang,Duan–Hui Si,Qiu‐Jin Wu,Qiao Wu,Yuan‐Biao Huang,Rong Cao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:458: 141360-141360 被引量:42
标识
DOI:10.1016/j.cej.2023.141360
摘要

Charge transfer efficiency between discrete photosensitizers and catalytic sites is a key limiting factor in artificial photosynthesis. It is highly desirable but challenging to efficiently combine the two sections into an integration system and get insight into the kinetics and mechanisms. Here in, the photosensitizer [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine) and active cobalt porphyrin (Co-Por) sites were integrated into a covalent organic framework (COF), named COF-RuBpy-Co, for efficient charge transfer and photocatalytic CO2 reduction. The catalyst COF-RuBpy-Co exhibited excellent CO2 photoreduction activity towards CO production with a rate of 547 μmol g−1h−1, which is 1.4-fold enhancement over the physical mixture of Ru(bpy)3Cl2 and COF-Bpy-Co. In situ X-ray photoelectron spectroscopy combined with theoretical calculation results revealed that COF-RuBpy-Co achieved efficient photoelectron transfer from [Ru(bpy)3]2+ to cobalt porphyrin. More importantly, transient absorption spectroscopy indicated that the covalent linking [Ru(bpy)3]2+and Co-Por units realized a faster charge transfer (44.2 ps) over the large π-conjugated system. This work provides vital insights into the charge carrier transfer process and demonstrates the potential of COFs as a platform in artificial photosynthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级的鞅发布了新的文献求助10
刚刚
李健应助甜筒采纳,获得10
刚刚
1秒前
所所应助吧唧吧唧采纳,获得10
1秒前
jin_0124完成签到,获得积分10
1秒前
2秒前
young发布了新的文献求助10
3秒前
蛋子s发布了新的文献求助10
4秒前
zaq发布了新的文献求助10
4秒前
NexusExplorer应助超级的鞅采纳,获得10
4秒前
浪子应助科研通管家采纳,获得30
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
浪子应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得30
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
6秒前
ysl发布了新的文献求助10
6秒前
乐天生完成签到,获得积分10
7秒前
工大搬砖战神完成签到,获得积分10
7秒前
丘比特应助oue采纳,获得10
8秒前
8秒前
10秒前
YZQ完成签到,获得积分10
10秒前
中二少女爱喝可乐完成签到,获得积分10
10秒前
传奇3应助蛋子s采纳,获得10
10秒前
11秒前
pluto应助sunny采纳,获得10
12秒前
kou发布了新的文献求助10
12秒前
水眉音完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802