Machine learning interatomic potential for molecular dynamics simulation of the ferroelectric KNbO3 perovskite

原子间势 铁电性 分子动力学 机器学习 声子 统计物理学 相变 算法 材料科学 人工智能 物理 计算机科学 凝聚态物理 量子力学 电介质
作者
Hao‐Cheng Thong,Xiaoyang Wang,Jian Han,Linfeng Zhang,Bei Li,Ke Wang,Ben Xu
出处
期刊:Physical review [American Physical Society]
卷期号:107 (1) 被引量:19
标识
DOI:10.1103/physrevb.107.014101
摘要

Ferroelectric perovskites have been ubiquitously applied in piezoelectric devices for decades, among which ecofriendly lead-free $(\mathrm{K},\phantom{\rule{0.16em}{0ex}}\mathrm{Na})\mathrm{Nb}{\mathrm{O}}_{3}\text{\ensuremath{-}}\mathrm{based}$ materials have been recently demonstrated to be an excellent candidate for sustainable development. Molecular dynamics is a versatile theoretical calculation approach for the investigation of the dynamical properties of ferroelectric perovskites. However, molecular dynamics simulation of ferroelectric perovskites has been limited to simple systems, since the conventional construction of interatomic potential is rather difficult and inefficient. In the present study, we construct a machine-learning interatomic potential of $\mathrm{KNb}{\mathrm{O}}_{3}$ [as a representative system of $(\mathrm{K},\phantom{\rule{0.16em}{0ex}}\mathrm{Na})\mathrm{Nb}{\mathrm{O}}_{3}$] by using a deep neural network model. Including first-principles calculation data into the training data set ensures the quantum-mechanics accuracy of the interatomic potential. The molecular dynamics based on machine-learning interatomic potential shows good agreement with the first-principles calculations, which can accurately predict multiple fundamental properties, e.g., atomic force, energy, elastic properties, and phonon dispersion. In addition, the interatomic potential exhibits satisfactory performance in the simulation of domain wall and temperature-dependent phase transition. The construction of interatomic potential based on machine learning could potentially be transferred to other ferroelectric perovskites and consequently benefit the theoretical study of ferroelectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
太阳完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
发论文完成签到 ,获得积分10
2秒前
张青争完成签到,获得积分10
3秒前
万能图书馆应助雷梦芝采纳,获得10
4秒前
4秒前
hans发布了新的文献求助10
4秒前
4秒前
完美世界应助qzxwsa采纳,获得10
5秒前
SciGPT应助不可靠月亮采纳,获得10
5秒前
6秒前
Ava应助唐唯一采纳,获得10
7秒前
浮游应助jorgan采纳,获得10
7秒前
李佳发布了新的文献求助10
7秒前
橘里完成签到,获得积分10
7秒前
猪猪发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
贯云完成签到,获得积分10
10秒前
10秒前
10秒前
Nuyoah完成签到,获得积分10
11秒前
Criminology34应助微光熠采纳,获得10
11秒前
安静的遥发布了新的文献求助30
11秒前
曲奇发布了新的文献求助10
11秒前
玉耀完成签到,获得积分10
12秒前
iris2333发布了新的文献求助10
12秒前
13秒前
觉允若意完成签到,获得积分10
13秒前
14秒前
黄坤完成签到,获得积分10
14秒前
14秒前
Jared应助沉住气采纳,获得10
14秒前
Yu应助周shang采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485