A novel efficient probabilistic prediction approach for train-induced ground vibrations based on transfer learning

随机性 振动 人工神经网络 概率逻辑 加速度 统计模型 工程类 有限元法 计算机科学 高斯分布 地面振动 人工智能 结构工程 声学 数学 统计 物理 经典力学 量子力学
作者
Ruihua Liang,Weifeng Liu,Chunyang Li,Wanbo Li,Zongzhen Wu
出处
期刊:Journal of Vibration and Control [SAGE Publishing]
卷期号:30 (3-4): 576-587 被引量:32
标识
DOI:10.1177/10775463221148792
摘要

To deal with the issues of high computational cost and prediction uncertainty of numerical models in train-induced ground-borne vibration prediction, a prediction method based on transfer learning is proposed in this study. In this method, the vehicle–track-coupled analytical model and three-dimensional finite element model are first used to calculate the train-induced ground vibration under various condition variables, and these data were used as training samples to pre-train the deep neural network models. Numerous train-induced ground vibration experiments were then conducted along the metro lines in Beijing, and those measured vibration data were used to fine-tune the pre-trained deep neural network model with the transfer learning strategy. A random variable obeying a Gaussian distribution is assumed over the predicted vibration acceleration levels to model the randomness of train-induced vibration, and the parameters of this distribution were determined by the statistical results of vibration monitoring data in the metro tunnels. The fully trained model could complete the prediction of train-induced ground vibration in seconds. Finally, a case study was carried out, by comparing the probabilistic prediction results with the statistical results of the field measurements, and the feasibility and the improvement of the proposed method were demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴小苏完成签到,获得积分10
刚刚
ZYYZYY发布了新的文献求助30
刚刚
刚刚
刚刚
wwwu完成签到,获得积分10
刚刚
蜘猪侠发布了新的文献求助10
刚刚
科研通AI5应助烂漫的绿蝶采纳,获得10
刚刚
Gotyababy发布了新的文献求助10
1秒前
Yolo完成签到,获得积分10
1秒前
1秒前
Kenny发布了新的文献求助10
1秒前
1秒前
哪吒完成签到,获得积分20
1秒前
123466关注了科研通微信公众号
2秒前
oneday发布了新的文献求助10
2秒前
JIAYIWANG完成签到,获得积分20
2秒前
一直找不到文献完成签到 ,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
DrY发布了新的文献求助10
3秒前
123发布了新的文献求助10
4秒前
4秒前
领导范儿应助纪秋采纳,获得10
4秒前
小白一号完成签到,获得积分10
4秒前
4秒前
5秒前
赵卓发布了新的文献求助10
5秒前
高源完成签到,获得积分20
6秒前
好运来发发发完成签到,获得积分10
6秒前
Jasper应助7_蜗牛采纳,获得10
6秒前
充电宝应助机智的寒天采纳,获得10
6秒前
7秒前
wss发布了新的文献求助10
7秒前
华仔应助秧秧采纳,获得10
7秒前
beenest完成签到,获得积分10
8秒前
Dr.zhong发布了新的文献求助10
8秒前
8秒前
9秒前
鲸鱼发布了新的文献求助10
9秒前
长情的尔蓝完成签到,获得积分10
10秒前
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559