Joint Task Offloading and Resource Allocation for Vehicular Edge Computing Based on V2I and V2V Modes

计算机科学 调度(生产过程) 分布式计算 计算卸载 边缘计算 移动边缘计算 资源配置 计算复杂性理论 实时计算 GSM演进的增强数据速率 计算机网络 数学优化 算法 服务器 人工智能 数学
作者
Wenhao Fan,Yi Su,Jie Liu,Shenmeng Li,Wei Huang,Fan Wu,Yuanan Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4277-4292 被引量:78
标识
DOI:10.1109/tits.2022.3230430
摘要

In an internet of vehicle (IoV) scenario, vehicular edge computing (VEC) exploits the computing capabilities of the vehicles and roadside unit (RSU) to enhance the task processing capabilities of the vehicles. Resource management is essential to the performance improvement of the VEC system. In this paper, we propose a joint task offloading and resource allocation scheme to minimize the total task processing delay of all the vehicles through task scheduling, channel allocation, and computing resource allocation for the vehicles and RSU. Different from the existing works, our scheme: 1) considers task diversity by profiling the tasks of the vehicles by multiple attributes including data size, computation amount, delay tolerance, and task type; 2) considers vehicle classification by dividing the vehicles into 4 sets according to whether they have task offloading requirements or provide task processing services; 3) considers task processing flexibility by deciding for each vehicle to process its tasks locally, to offload the tasks to the RSU via V2I (Vehicle to Infrastructure) connections, or to the other vehicles via V2V (Vehicle to Vehicle) connections. An algorithm based on the Generalized Benders Decomposition (GBD) and Reformulation Linearization (RL) methods is designed to optimally solve the optimization problem. A heuristic algorithm is also designed to provide the sub-optimal solution with low computational complexity. We analyze the convergence and complexity of the proposed algorithms and conduct extensive simulations in 6 scenarios. The simulation results demonstrate the superiority of our scheme in comparison with 4 other schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸楷瑞发布了新的文献求助10
1秒前
Young4399发布了新的文献求助10
1秒前
Owen应助reborn采纳,获得10
2秒前
3秒前
3秒前
豪子发布了新的文献求助10
3秒前
尉迟希望应助加菲丰丰采纳,获得10
5秒前
6秒前
SABUBU完成签到,获得积分10
6秒前
丫头发布了新的文献求助10
7秒前
大模型应助欧皇采纳,获得10
8秒前
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得30
10秒前
星辰大海应助科研通管家采纳,获得30
10秒前
浮游应助科研通管家采纳,获得20
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
阔达千萍应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
Jason完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
希望天下0贩的0应助小椰采纳,获得10
12秒前
YY发布了新的文献求助10
13秒前
维尼熊发布了新的文献求助10
14秒前
15秒前
15秒前
打野完成签到,获得积分10
15秒前
16秒前
彭于晏应助健忘的曼雁采纳,获得30
17秒前
可爱的函函应助Shirley采纳,获得20
18秒前
水沐菁华发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353187
求助须知:如何正确求助?哪些是违规求助? 4485831
关于积分的说明 13964569
捐赠科研通 4386047
什么是DOI,文献DOI怎么找? 2409731
邀请新用户注册赠送积分活动 1402013
关于科研通互助平台的介绍 1375783