A deeper generative adversarial network for grooved cement concrete pavement crack detection

计算机科学 生成对抗网络 分割 像素 开裂 修补 稳健性(进化) 人工智能 图像(数学) 深度学习 复合材料 材料科学 生物化学 基因 化学
作者
Jingtao Zhong,Ju Huyan,Weiguang Zhang,Hanglin Cheng,Jing Zhang,Tong Zheng,Xi Jiang,Baoshan Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:119: 105808-105808 被引量:31
标识
DOI:10.1016/j.engappai.2022.105808
摘要

Periodic grooved cement concrete pavement crack detection is of great importance for pavement condition monitoring and maintenance. The current state-of-the-art (SOTA) detection solutions highly depend on datasets. However, due to the limited access to crack images, more efficient methods are urgently needed to advance the detection of cracking on grooved cement concrete pavement. This study proposes an improved deeper Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to generate datasets of pavement images with a size of 512 × 512 pixels 2. Poisson bleeding is adopted to create the synthesized grooved cement concrete pavement crack images based on the generated crack images and groove images. The robustness of the proposed improved deeper WGAN-GP model is validated by Faster R-CNN, YOLOv3, and YOLOv4 models trained on original crack images and generated crack images for region-level detection. U-Net and W-segnet are used to achieve pixel-level crack detection to evaluate the effectiveness of proposed model. Results show that the improved deeper WGAN-GP could generate more realistic transverse, longitudinal and oblique crack images. In addition, the Poisson bleeding algorithm contributes to synthesizing grooved cement concrete pavement crack images. Moreover, it is observed that YOLOv3 trained by the augmented dataset could achieve a mean average precision (MAP) of 81.98%, 6% MAP higher than the non-augmented dataset. U-Net and W-segnet benefit from augmented dataset with a better pixel-level segmentation result. Based on the results, it can be concluded that the improved deeper WAGN-GP image generation method can provide a straightforward way to fill the data shortage gap of grooved cement concrete pavement cracks, thus increasing the problem-solving capability of the SOTA crack detection models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助不安的博采纳,获得10
刚刚
爆米花应助宇文霆采纳,获得10
刚刚
刚刚
orange909完成签到,获得积分10
1秒前
1秒前
1秒前
Nobita发布了新的文献求助10
1秒前
1秒前
今后应助知性的安波采纳,获得20
2秒前
15359015265发布了新的文献求助10
2秒前
NMZN发布了新的文献求助10
2秒前
3秒前
wanci应助大大采纳,获得10
3秒前
Dr_J完成签到,获得积分10
3秒前
薇薇完成签到,获得积分10
4秒前
淼队发布了新的文献求助10
4秒前
麦芽糖完成签到,获得积分10
5秒前
unknowneil发布了新的文献求助10
5秒前
kanaeo完成签到,获得积分10
5秒前
慕青应助盒子打篮球采纳,获得10
6秒前
七月初七发布了新的文献求助10
6秒前
6秒前
游啊游发布了新的文献求助10
6秒前
丘比特应助章鱼采纳,获得10
7秒前
7秒前
张明发布了新的文献求助10
8秒前
8秒前
lmm完成签到,获得积分20
8秒前
9秒前
9秒前
java发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
许树生完成签到,获得积分20
10秒前
10秒前
无奈雅霜发布了新的文献求助10
10秒前
11秒前
想毕业的0211完成签到,获得积分10
11秒前
淼队完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839