A deeper generative adversarial network for grooved cement concrete pavement crack detection

计算机科学 生成对抗网络 分割 像素 开裂 修补 稳健性(进化) 人工智能 图像(数学) 深度学习 复合材料 材料科学 生物化学 基因 化学
作者
Jingtao Zhong,Ju Huyan,Weiguang Zhang,Hanglin Cheng,Jing Zhang,Tong Zheng,Xi Jiang,Baoshan Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:119: 105808-105808 被引量:31
标识
DOI:10.1016/j.engappai.2022.105808
摘要

Periodic grooved cement concrete pavement crack detection is of great importance for pavement condition monitoring and maintenance. The current state-of-the-art (SOTA) detection solutions highly depend on datasets. However, due to the limited access to crack images, more efficient methods are urgently needed to advance the detection of cracking on grooved cement concrete pavement. This study proposes an improved deeper Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to generate datasets of pavement images with a size of 512 × 512 pixels 2. Poisson bleeding is adopted to create the synthesized grooved cement concrete pavement crack images based on the generated crack images and groove images. The robustness of the proposed improved deeper WGAN-GP model is validated by Faster R-CNN, YOLOv3, and YOLOv4 models trained on original crack images and generated crack images for region-level detection. U-Net and W-segnet are used to achieve pixel-level crack detection to evaluate the effectiveness of proposed model. Results show that the improved deeper WGAN-GP could generate more realistic transverse, longitudinal and oblique crack images. In addition, the Poisson bleeding algorithm contributes to synthesizing grooved cement concrete pavement crack images. Moreover, it is observed that YOLOv3 trained by the augmented dataset could achieve a mean average precision (MAP) of 81.98%, 6% MAP higher than the non-augmented dataset. U-Net and W-segnet benefit from augmented dataset with a better pixel-level segmentation result. Based on the results, it can be concluded that the improved deeper WAGN-GP image generation method can provide a straightforward way to fill the data shortage gap of grooved cement concrete pavement cracks, thus increasing the problem-solving capability of the SOTA crack detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莹莹啊发布了新的文献求助10
1秒前
今后应助甜甜沛蓝采纳,获得10
1秒前
Xin发布了新的文献求助10
1秒前
CipherSage应助Espoir采纳,获得10
1秒前
任从蓉发布了新的文献求助10
2秒前
2秒前
王汉堡完成签到,获得积分10
2秒前
派提克发布了新的文献求助10
3秒前
3秒前
传奇3应助哎哟大侠采纳,获得10
3秒前
田様应助勿扰采纳,获得10
4秒前
停雨发布了新的文献求助10
4秒前
李爱国应助Jsihao采纳,获得10
4秒前
思源应助灵巧的沛山采纳,获得10
4秒前
烟花应助--采纳,获得10
4秒前
4秒前
4秒前
我不想看文献完成签到,获得积分10
5秒前
5秒前
酷酷语兰完成签到,获得积分10
6秒前
6秒前
斯文败类应助杨德帅采纳,获得10
6秒前
可爱的函函应助车窗外采纳,获得10
6秒前
科研通AI6应助天真的万声采纳,获得10
7秒前
无情的绝音完成签到,获得积分10
7秒前
7秒前
薛定谔的猫完成签到,获得积分10
7秒前
dazed2发布了新的文献求助10
8秒前
重要的向南完成签到,获得积分10
8秒前
熬大夜完成签到 ,获得积分10
9秒前
123完成签到 ,获得积分10
9秒前
交理发布了新的文献求助30
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
苏木完成签到,获得积分10
11秒前
12秒前
派提克发布了新的文献求助10
12秒前
长乐完成签到,获得积分10
13秒前
13秒前
任从蓉完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406217
求助须知:如何正确求助?哪些是违规求助? 4524325
关于积分的说明 14097517
捐赠科研通 4438110
什么是DOI,文献DOI怎么找? 2435966
邀请新用户注册赠送积分活动 1428100
关于科研通互助平台的介绍 1406280