A deeper generative adversarial network for grooved cement concrete pavement crack detection

计算机科学 生成对抗网络 分割 像素 开裂 修补 稳健性(进化) 人工智能 图像(数学) 深度学习 复合材料 材料科学 生物化学 基因 化学
作者
Jingtao Zhong,Ju Huyan,Weiguang Zhang,Hanglin Cheng,Jing Zhang,Tong Zheng,Xi Jiang,Baoshan Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:119: 105808-105808 被引量:31
标识
DOI:10.1016/j.engappai.2022.105808
摘要

Periodic grooved cement concrete pavement crack detection is of great importance for pavement condition monitoring and maintenance. The current state-of-the-art (SOTA) detection solutions highly depend on datasets. However, due to the limited access to crack images, more efficient methods are urgently needed to advance the detection of cracking on grooved cement concrete pavement. This study proposes an improved deeper Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to generate datasets of pavement images with a size of 512 × 512 pixels 2. Poisson bleeding is adopted to create the synthesized grooved cement concrete pavement crack images based on the generated crack images and groove images. The robustness of the proposed improved deeper WGAN-GP model is validated by Faster R-CNN, YOLOv3, and YOLOv4 models trained on original crack images and generated crack images for region-level detection. U-Net and W-segnet are used to achieve pixel-level crack detection to evaluate the effectiveness of proposed model. Results show that the improved deeper WGAN-GP could generate more realistic transverse, longitudinal and oblique crack images. In addition, the Poisson bleeding algorithm contributes to synthesizing grooved cement concrete pavement crack images. Moreover, it is observed that YOLOv3 trained by the augmented dataset could achieve a mean average precision (MAP) of 81.98%, 6% MAP higher than the non-augmented dataset. U-Net and W-segnet benefit from augmented dataset with a better pixel-level segmentation result. Based on the results, it can be concluded that the improved deeper WAGN-GP image generation method can provide a straightforward way to fill the data shortage gap of grooved cement concrete pavement cracks, thus increasing the problem-solving capability of the SOTA crack detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助xue采纳,获得30
刚刚
zhangzhang发布了新的文献求助10
1秒前
2秒前
玩命的糖豆完成签到 ,获得积分10
2秒前
Mr.Young完成签到,获得积分10
2秒前
炸炸pptation完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Augety发布了新的文献求助10
6秒前
9秒前
香蕉觅云应助chen采纳,获得10
10秒前
完美的访梦完成签到,获得积分10
10秒前
12秒前
华仔应助hyr采纳,获得10
12秒前
苹果飞绿完成签到,获得积分10
12秒前
12秒前
核桃发布了新的文献求助10
12秒前
13秒前
wy.he应助Brave采纳,获得10
13秒前
王文杰完成签到,获得积分20
13秒前
hhhhh发布了新的文献求助10
14秒前
hhhhhhh发布了新的文献求助10
14秒前
小张完成签到,获得积分10
14秒前
健壮熊猫完成签到,获得积分10
16秒前
显隐发布了新的文献求助10
17秒前
sskaze完成签到 ,获得积分10
17秒前
显隐发布了新的文献求助10
17秒前
18秒前
苦瓜发布了新的文献求助10
19秒前
20秒前
Akim应助小远采纳,获得10
21秒前
拼搏起眸发布了新的文献求助20
22秒前
超级忆雪发布了新的文献求助10
23秒前
24秒前
培a发布了新的文献求助10
24秒前
qweqwe完成签到,获得积分10
24秒前
Lucas应助zzxx采纳,获得10
24秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232