A deeper generative adversarial network for grooved cement concrete pavement crack detection

计算机科学 生成对抗网络 分割 像素 开裂 修补 稳健性(进化) 人工智能 图像(数学) 深度学习 复合材料 材料科学 生物化学 化学 基因
作者
Jingtao Zhong,Ju Huyan,Weiguang Zhang,Hanglin Cheng,Jing Zhang,Tong Zheng,Xi Jiang,Baoshan Huang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:119: 105808-105808 被引量:31
标识
DOI:10.1016/j.engappai.2022.105808
摘要

Periodic grooved cement concrete pavement crack detection is of great importance for pavement condition monitoring and maintenance. The current state-of-the-art (SOTA) detection solutions highly depend on datasets. However, due to the limited access to crack images, more efficient methods are urgently needed to advance the detection of cracking on grooved cement concrete pavement. This study proposes an improved deeper Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to generate datasets of pavement images with a size of 512 × 512 pixels 2. Poisson bleeding is adopted to create the synthesized grooved cement concrete pavement crack images based on the generated crack images and groove images. The robustness of the proposed improved deeper WGAN-GP model is validated by Faster R-CNN, YOLOv3, and YOLOv4 models trained on original crack images and generated crack images for region-level detection. U-Net and W-segnet are used to achieve pixel-level crack detection to evaluate the effectiveness of proposed model. Results show that the improved deeper WGAN-GP could generate more realistic transverse, longitudinal and oblique crack images. In addition, the Poisson bleeding algorithm contributes to synthesizing grooved cement concrete pavement crack images. Moreover, it is observed that YOLOv3 trained by the augmented dataset could achieve a mean average precision (MAP) of 81.98%, 6% MAP higher than the non-augmented dataset. U-Net and W-segnet benefit from augmented dataset with a better pixel-level segmentation result. Based on the results, it can be concluded that the improved deeper WAGN-GP image generation method can provide a straightforward way to fill the data shortage gap of grooved cement concrete pavement cracks, thus increasing the problem-solving capability of the SOTA crack detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
文艺发布了新的文献求助60
2秒前
2秒前
3秒前
3秒前
4秒前
Inevitable发布了新的文献求助10
4秒前
ppp完成签到,获得积分10
7秒前
nihao发布了新的文献求助10
8秒前
zhjp发布了新的文献求助10
8秒前
Very发布了新的文献求助10
9秒前
我是老大应助Pauline采纳,获得10
10秒前
Hello应助Mr贱包子采纳,获得10
11秒前
13秒前
jin发布了新的文献求助10
14秒前
14秒前
14秒前
www发布了新的文献求助10
15秒前
16秒前
宋博发布了新的文献求助10
16秒前
tamer完成签到,获得积分10
17秒前
缥缈的洪纲完成签到,获得积分10
18秒前
情怀应助张龙雨采纳,获得10
18秒前
18秒前
21秒前
22秒前
22秒前
ggg发布了新的文献求助10
24秒前
科研通AI2S应助ws采纳,获得30
25秒前
乐小泽发布了新的文献求助10
25秒前
唐唐发布了新的文献求助10
27秒前
31秒前
SciGPT应助葉落葉飄采纳,获得10
31秒前
无限大树发布了新的文献求助10
32秒前
酷波er应助ggg采纳,获得10
32秒前
Tony完成签到,获得积分10
33秒前
34秒前
35秒前
35秒前
柠檬汽水发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161657
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897803
捐赠科研通 2471830
什么是DOI,文献DOI怎么找? 1316176
科研通“疑难数据库(出版商)”最低求助积分说明 631245
版权声明 602129