Double-Lumen Endotracheal Tube—Predicting Insertion Depth and Tube Size Based on Patient’s Chest X-ray Image Data and 4 Other Body Parameters

医学 心胸外科 管腔(解剖学) 周长 外科 核医学 数学 几何学
作者
Tsai-Rong Chang,Mei‐Kang Yuan,Shao-Fang Pan,Chia-Chun Chuang,Edmund Cheung So
出处
期刊:Diagnostics [MDPI AG]
卷期号:12 (12): 3162-3162 被引量:2
标识
DOI:10.3390/diagnostics12123162
摘要

In thoracic surgery, the double lumen endotracheal tube (DLT) is used for differential ventilation of the lung. DLT allows lung collapse on the surgical side that requires access to the thoracic and mediastinal areas. DLT placement for a given patient depends on two settings: a tube of the correct size (or ‘size’) and to the correct insertion depth (or ‘depth’). Incorrect DLT placements cause oxygen desaturation or carbon dioxide retention in the patient, with possible surgical failure. No guideline on these settings is currently available for anesthesiologists, except for the aid by bronchoscopy. In this study, we aimed to predict DLT ‘depths’ and ‘sizes’ applied earlier on a group of patients (n = 231) using a computer modeling approach. First, for these patients we retrospectively determined the correlation coefficient (r) of each of the 17 body parameters against ‘depth’ and ‘size’. Those parameters having r > 0.5 and that could be easily obtained or measured were selected. They were, for both DLT settings: (a) sex, (b) height, (c) tracheal diameter (measured from X-ray), and (d) weight. For ‘size’, a fifth parameter, (e) chest circumference was added. Based on these four or five parameters, we modeled the clinical DLT settings using a Support Vector Machine (SVM). After excluding statistical outliers (±2 SD), 83.5% of the subjects were left for ‘depth’ in the modeling, and similarly 85.3% for ‘size’. SVM predicted ‘depths’ matched with their clinical values at a r of 0.91, and for ‘sizes’, at an r of 0.82. The less satisfactory result on ‘size’ prediction was likely due to the small target choices (n = 4) and the uneven data distribution. Furthermore, SVM outperformed other common models, such as linear regression. In conclusion, this first model for predicting the two DLT key settings gave satisfactory results. Findings would help anesthesiologists in applying DLT procedures more confidently in an evidence-based way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
芋圆不圆完成签到,获得积分10
3秒前
招财不肥发布了新的文献求助10
4秒前
zxc111发布了新的文献求助10
4秒前
魔幻的从梦完成签到,获得积分10
4秒前
5秒前
Xiaoxiao应助sunyexuan采纳,获得10
6秒前
7秒前
8秒前
淼淼之锋完成签到 ,获得积分10
8秒前
赢赢完成签到 ,获得积分10
8秒前
9秒前
10秒前
科目三应助落落采纳,获得10
12秒前
67发布了新的文献求助10
12秒前
12秒前
溜溜完成签到,获得积分10
12秒前
xixi完成签到 ,获得积分10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
撒上咖啡应助科研通管家采纳,获得10
13秒前
RC_Wang应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
琪琪扬扬发布了新的文献求助10
13秒前
sutharsons应助科研通管家采纳,获得30
13秒前
orixero应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
清爽老九应助科研通管家采纳,获得20
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
hui发布了新的文献求助30
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808