已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Double-Lumen Endotracheal Tube—Predicting Insertion Depth and Tube Size Based on Patient’s Chest X-ray Image Data and 4 Other Body Parameters

医学 心胸外科 管腔(解剖学) 周长 外科 核医学 数学 几何学
作者
Tsai-Rong Chang,Mei‐Kang Yuan,Shao-Fang Pan,Chia-Chun Chuang,Edmund Cheung So
出处
期刊:Diagnostics [MDPI AG]
卷期号:12 (12): 3162-3162 被引量:2
标识
DOI:10.3390/diagnostics12123162
摘要

In thoracic surgery, the double lumen endotracheal tube (DLT) is used for differential ventilation of the lung. DLT allows lung collapse on the surgical side that requires access to the thoracic and mediastinal areas. DLT placement for a given patient depends on two settings: a tube of the correct size (or ‘size’) and to the correct insertion depth (or ‘depth’). Incorrect DLT placements cause oxygen desaturation or carbon dioxide retention in the patient, with possible surgical failure. No guideline on these settings is currently available for anesthesiologists, except for the aid by bronchoscopy. In this study, we aimed to predict DLT ‘depths’ and ‘sizes’ applied earlier on a group of patients (n = 231) using a computer modeling approach. First, for these patients we retrospectively determined the correlation coefficient (r) of each of the 17 body parameters against ‘depth’ and ‘size’. Those parameters having r > 0.5 and that could be easily obtained or measured were selected. They were, for both DLT settings: (a) sex, (b) height, (c) tracheal diameter (measured from X-ray), and (d) weight. For ‘size’, a fifth parameter, (e) chest circumference was added. Based on these four or five parameters, we modeled the clinical DLT settings using a Support Vector Machine (SVM). After excluding statistical outliers (±2 SD), 83.5% of the subjects were left for ‘depth’ in the modeling, and similarly 85.3% for ‘size’. SVM predicted ‘depths’ matched with their clinical values at a r of 0.91, and for ‘sizes’, at an r of 0.82. The less satisfactory result on ‘size’ prediction was likely due to the small target choices (n = 4) and the uneven data distribution. Furthermore, SVM outperformed other common models, such as linear regression. In conclusion, this first model for predicting the two DLT key settings gave satisfactory results. Findings would help anesthesiologists in applying DLT procedures more confidently in an evidence-based way.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛爱花发布了新的文献求助10
2秒前
xx发布了新的文献求助50
3秒前
南北完成签到 ,获得积分10
3秒前
甜甜圈完成签到 ,获得积分10
6秒前
9秒前
11秒前
11秒前
wang完成签到 ,获得积分10
13秒前
科研通AI2S应助元谷雪采纳,获得10
15秒前
口合发布了新的文献求助10
16秒前
abc105发布了新的文献求助10
17秒前
17秒前
王一一发布了新的文献求助10
18秒前
汉堡包应助牛爱花采纳,获得10
18秒前
Litm完成签到 ,获得积分10
20秒前
BowieHuang应助super chan采纳,获得10
20秒前
Scout完成签到,获得积分10
23秒前
石幻枫发布了新的文献求助10
23秒前
23秒前
Sake完成签到,获得积分20
24秒前
BowieHuang应助口合采纳,获得10
24秒前
dglyl发布了新的文献求助30
26秒前
La完成签到 ,获得积分10
28秒前
28秒前
聪慧的乐驹完成签到,获得积分10
28秒前
小蘑菇应助王一一采纳,获得10
29秒前
33秒前
苗条的嫣完成签到,获得积分10
36秒前
开放从云完成签到 ,获得积分10
37秒前
40秒前
41秒前
英俊的铭应助萧子采纳,获得10
42秒前
bgt完成签到 ,获得积分10
43秒前
43秒前
犬来八荒发布了新的文献求助10
46秒前
丘比特应助彭凯采纳,获得10
46秒前
50秒前
耍酷夏彤完成签到,获得积分20
51秒前
qhcaywy发布了新的文献求助10
55秒前
杨子怡完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558171
求助须知:如何正确求助?哪些是违规求助? 4643177
关于积分的说明 14670639
捐赠科研通 4584605
什么是DOI,文献DOI怎么找? 2514971
邀请新用户注册赠送积分活动 1489087
关于科研通互助平台的介绍 1459733