Double-Lumen Endotracheal Tube—Predicting Insertion Depth and Tube Size Based on Patient’s Chest X-ray Image Data and 4 Other Body Parameters

医学 心胸外科 管腔(解剖学) 周长 外科 核医学 数学 几何学
作者
Tsai-Rong Chang,Mei‐Kang Yuan,Shao-Fang Pan,Chia-Chun Chuang,Edmund Cheung So
出处
期刊:Diagnostics [MDPI AG]
卷期号:12 (12): 3162-3162 被引量:2
标识
DOI:10.3390/diagnostics12123162
摘要

In thoracic surgery, the double lumen endotracheal tube (DLT) is used for differential ventilation of the lung. DLT allows lung collapse on the surgical side that requires access to the thoracic and mediastinal areas. DLT placement for a given patient depends on two settings: a tube of the correct size (or ‘size’) and to the correct insertion depth (or ‘depth’). Incorrect DLT placements cause oxygen desaturation or carbon dioxide retention in the patient, with possible surgical failure. No guideline on these settings is currently available for anesthesiologists, except for the aid by bronchoscopy. In this study, we aimed to predict DLT ‘depths’ and ‘sizes’ applied earlier on a group of patients (n = 231) using a computer modeling approach. First, for these patients we retrospectively determined the correlation coefficient (r) of each of the 17 body parameters against ‘depth’ and ‘size’. Those parameters having r > 0.5 and that could be easily obtained or measured were selected. They were, for both DLT settings: (a) sex, (b) height, (c) tracheal diameter (measured from X-ray), and (d) weight. For ‘size’, a fifth parameter, (e) chest circumference was added. Based on these four or five parameters, we modeled the clinical DLT settings using a Support Vector Machine (SVM). After excluding statistical outliers (±2 SD), 83.5% of the subjects were left for ‘depth’ in the modeling, and similarly 85.3% for ‘size’. SVM predicted ‘depths’ matched with their clinical values at a r of 0.91, and for ‘sizes’, at an r of 0.82. The less satisfactory result on ‘size’ prediction was likely due to the small target choices (n = 4) and the uneven data distribution. Furthermore, SVM outperformed other common models, such as linear regression. In conclusion, this first model for predicting the two DLT key settings gave satisfactory results. Findings would help anesthesiologists in applying DLT procedures more confidently in an evidence-based way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助xingzai101采纳,获得10
1秒前
雾中的山雾中的我完成签到,获得积分10
2秒前
打打应助一区作者采纳,获得10
2秒前
欢歌笑语完成签到,获得积分10
3秒前
4秒前
独特的沛儿完成签到,获得积分10
4秒前
Akim应助科研人科研魂采纳,获得10
4秒前
c123完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
科研通AI2S应助悲凉的紊采纳,获得10
7秒前
九三完成签到,获得积分10
8秒前
Ava应助shanshan采纳,获得10
8秒前
英姑应助c123采纳,获得10
10秒前
学术菜鸡发布了新的文献求助10
10秒前
邵翎365发布了新的文献求助10
11秒前
上官若男应助Suagy采纳,获得10
11秒前
OmmeHabiba完成签到,获得积分10
11秒前
12秒前
张玉发布了新的文献求助10
12秒前
13秒前
13秒前
CodeCraft应助粗暴的君浩采纳,获得10
14秒前
14秒前
赘婿应助科研小达人采纳,获得10
15秒前
端庄白猫发布了新的文献求助10
17秒前
勤劳的凤灵关注了科研通微信公众号
18秒前
18秒前
19秒前
一区作者发布了新的文献求助10
19秒前
Pia唧发布了新的文献求助10
19秒前
于鱼完成签到,获得积分20
20秒前
神明发布了新的文献求助30
20秒前
xh完成签到,获得积分10
21秒前
蜡笔小俽发布了新的文献求助10
21秒前
21秒前
chitin chu完成签到,获得积分10
22秒前
yjwang发布了新的文献求助10
22秒前
小菜鸟完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123020
求助须知:如何正确求助?哪些是违规求助? 2773567
关于积分的说明 7718302
捐赠科研通 2429164
什么是DOI,文献DOI怎么找? 1290167
科研通“疑难数据库(出版商)”最低求助积分说明 621736
版权声明 600220