已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Double-Lumen Endotracheal Tube—Predicting Insertion Depth and Tube Size Based on Patient’s Chest X-ray Image Data and 4 Other Body Parameters

医学 心胸外科 管腔(解剖学) 周长 外科 核医学 数学 几何学
作者
Tsai-Rong Chang,Mei‐Kang Yuan,Shao-Fang Pan,Chia-Chun Chuang,Edmund Cheung So
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 3162-3162 被引量:2
标识
DOI:10.3390/diagnostics12123162
摘要

In thoracic surgery, the double lumen endotracheal tube (DLT) is used for differential ventilation of the lung. DLT allows lung collapse on the surgical side that requires access to the thoracic and mediastinal areas. DLT placement for a given patient depends on two settings: a tube of the correct size (or ‘size’) and to the correct insertion depth (or ‘depth’). Incorrect DLT placements cause oxygen desaturation or carbon dioxide retention in the patient, with possible surgical failure. No guideline on these settings is currently available for anesthesiologists, except for the aid by bronchoscopy. In this study, we aimed to predict DLT ‘depths’ and ‘sizes’ applied earlier on a group of patients (n = 231) using a computer modeling approach. First, for these patients we retrospectively determined the correlation coefficient (r) of each of the 17 body parameters against ‘depth’ and ‘size’. Those parameters having r > 0.5 and that could be easily obtained or measured were selected. They were, for both DLT settings: (a) sex, (b) height, (c) tracheal diameter (measured from X-ray), and (d) weight. For ‘size’, a fifth parameter, (e) chest circumference was added. Based on these four or five parameters, we modeled the clinical DLT settings using a Support Vector Machine (SVM). After excluding statistical outliers (±2 SD), 83.5% of the subjects were left for ‘depth’ in the modeling, and similarly 85.3% for ‘size’. SVM predicted ‘depths’ matched with their clinical values at a r of 0.91, and for ‘sizes’, at an r of 0.82. The less satisfactory result on ‘size’ prediction was likely due to the small target choices (n = 4) and the uneven data distribution. Furthermore, SVM outperformed other common models, such as linear regression. In conclusion, this first model for predicting the two DLT key settings gave satisfactory results. Findings would help anesthesiologists in applying DLT procedures more confidently in an evidence-based way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助啾啾采纳,获得10
3秒前
胡一刀完成签到,获得积分10
4秒前
dreamboat完成签到,获得积分10
5秒前
5秒前
梁梁完成签到 ,获得积分10
7秒前
7秒前
沉静乾发布了新的文献求助10
7秒前
8秒前
10秒前
梁海萍发布了新的文献求助10
10秒前
EKo完成签到,获得积分10
11秒前
情怀应助zjx采纳,获得10
11秒前
畅快枕头完成签到 ,获得积分0
12秒前
SciHub完成签到 ,获得积分10
12秒前
草莓熊1215完成签到 ,获得积分10
13秒前
彭于晏应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
14秒前
爆米花应助科研通管家采纳,获得30
14秒前
李文豪发布了新的文献求助10
14秒前
唐泽雪穗发布了新的文献求助100
16秒前
17秒前
山山完成签到 ,获得积分10
20秒前
20秒前
哲000完成签到 ,获得积分10
21秒前
土豆小胖子完成签到,获得积分10
21秒前
CC完成签到 ,获得积分10
22秒前
zjx完成签到,获得积分10
22秒前
23秒前
SCINEXUS完成签到,获得积分0
25秒前
吴雨茜发布了新的文献求助10
28秒前
linkman发布了新的文献求助10
28秒前
胖莹完成签到 ,获得积分10
29秒前
30秒前
研友_8yNl3L完成签到,获得积分10
34秒前
35秒前
温柔的伊完成签到 ,获得积分10
35秒前
merry6669完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925756
求助须知:如何正确求助?哪些是违规求助? 4195911
关于积分的说明 13031268
捐赠科研通 3967492
什么是DOI,文献DOI怎么找? 2174627
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101628