Joint Device Selection and Bandwidth Allocation for Cost-Efficient Federated Learning in Industrial Internet of Things

计算机科学 Lyapunov优化 带宽分配 最优化问题 杠杆(统计) 能源消耗 数学优化 边缘设备 边缘计算 上传 带宽(计算) 分布式计算 计算机网络 GSM演进的增强数据速率 人工智能 算法 云计算 Lyapunov重新设计 生态学 李雅普诺夫指数 数学 混乱的 生物 操作系统
作者
Xiuzhao Ji,Jie Tian,Haixia Zhang,Dalei Wu,Tiantian Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (10): 9148-9160 被引量:12
标识
DOI:10.1109/jiot.2022.3233595
摘要

Along with the deployment of Industrial Internet of Things (IIoT), massive amounts of industrial data have been generated at the network edge, driving the evolution of edge machine learning (ML). But during the ML model training, it may bring privacy leakage by traditional central methods. To address this issue, federated learning (FL) has been proposed as a distributed learning framework for training a global model without uploading raw data to protect data privacy. Since the communication and computing resources are usually limited in IIoT networks, how to reasonably select device and allocate bandwidth is crucial for the FL model training. Therefore, this article proposes a joint edge device selection and bandwidth allocation scheme for FL to minimize the time-averaged cost under the given long-term energy budget and delay constraints in the IIoT system. To tackle with this long-term optimization problem, we construct a virtual energy deficit queue and leverage the Lyapunov optimization theory to transform it into a list of round-wise drift-plus-cost minimization problems first. Then, we design an iterative algorithm to allocate reasonable bandwidth and select appropriate devices to achieve cost minimization while satisfying the energy consumption constraints. Besides, we develop an optimality analysis of the average cost and energy violation for our proposed scheme. Extensive experiments verify that our proposed scheme can achieve superior performance in cost efficiency over other schemes while guaranteeing FL training performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianya完成签到,获得积分10
1秒前
完美世界应助sunshine采纳,获得10
1秒前
科研通AI2S应助马er采纳,获得10
2秒前
skbkbe完成签到,获得积分10
2秒前
2秒前
CAOHOU应助酷酷银耳汤采纳,获得10
2秒前
3秒前
6秒前
高贵梦露发布了新的文献求助10
8秒前
10秒前
11秒前
GL发布了新的文献求助10
11秒前
乐乐应助如意枫叶采纳,获得10
11秒前
12秒前
史念薇发布了新的文献求助10
12秒前
xixi完成签到 ,获得积分10
12秒前
14秒前
青野发布了新的文献求助10
16秒前
19秒前
20秒前
高贵梦露完成签到,获得积分10
20秒前
22秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
如意枫叶发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
29秒前
30秒前
31秒前
赘婿应助GL采纳,获得10
31秒前
32秒前
32秒前
Archer宇完成签到,获得积分10
32秒前
狸花小喵发布了新的文献求助10
34秒前
科研废物完成签到 ,获得积分10
34秒前
35秒前
36秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136