亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of Chilling Injury in Kiwifruit Using Hyperspectral Structured-Illumination Reflectance Imaging System (SIRI) with Support Vector Machine (SVM) Modelling

高光谱成像 支持向量机 化学 反射率 人工智能 鉴定(生物学) 遥感 模式识别(心理学) 生物系统 计算机视觉 光学 植物 计算机科学 生物 物理 地质学
作者
Yonghui Ge,Siying Tu
出处
期刊:Analytical Letters [Informa]
卷期号:56 (12): 2040-2052 被引量:8
标识
DOI:10.1080/00032719.2022.2153364
摘要

AbstractAccurate detection of chilling injury in kiwifruit is challenging because the symptoms are mainly manifested in the interior. This work reports a method for detecting the chilling injury of 'Hongyang' kiwifruit to provide nondestructive discrimination. Kiwifruit samples with varying levels of chilling injury were analyzed by a hyperspectral structured-illumination reflectance imaging (SIRI) system. After demodulation, direct current (DC) and alternating current (AC) images with spatial frequencies of 30, 60, and 120 m−1 were obtained and labeled as F30, F60, and F120. Predictive models were developed to optimize the preprocessing and modeling methods. Prediction models established the results of DC and AC with different spatial frequencies and were compared. The autoscale-support vector machine (SVM) models were optimal for AC at different spatial frequencies, and the multiplicative scatter correction (MSC)-SVM model was optimal for DC. The combined features of F30, F60, and F120, as well as the spectral features of DC, had better accuracy for classifying chilling injury. The optimal model of hyperspectral SIRI system for detecting chilling injury was the F30 based on combined features, with calibration accuracy of 98.1% and prediction accuracy of 94.2%. This study has shown that structured illumination had higher accuracy than uniform illumination in predicting chilling injury. Further, this approach allows the identification of kiwifruit with chilling injury using a hyperspectral structured-illumination reflectance imaging system.Keywords: Chilling injuryhyperspectral structured illumination reflectance imaging (SIRI)kiwifruitpartial least squares discriminant analysis (PLS-DA)support vector machine (SVM) Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that influenced the work reported in this paper.Additional informationFundingThis work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
xiaoxiao完成签到,获得积分10
6秒前
典雅易槐发布了新的文献求助10
10秒前
14秒前
99668完成签到,获得积分10
17秒前
18秒前
22秒前
24秒前
nini发布了新的文献求助10
26秒前
小二郎应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
浮浮世世应助科研通管家采纳,获得30
33秒前
浮游应助科研通管家采纳,获得10
33秒前
寒玉完成签到,获得积分10
34秒前
37秒前
39秒前
39秒前
矮小的蜗牛完成签到,获得积分10
42秒前
Zilch发布了新的文献求助10
46秒前
52秒前
54秒前
所所应助一叶舟采纳,获得10
55秒前
迷路冰颜完成签到 ,获得积分10
56秒前
1nooooo完成签到 ,获得积分10
59秒前
1分钟前
矮小的蜗牛关注了科研通微信公众号
1分钟前
思源应助runfen采纳,获得10
1分钟前
1分钟前
wynne313完成签到 ,获得积分10
1分钟前
梨凉完成签到,获得积分10
1分钟前
王加冕完成签到 ,获得积分10
1分钟前
shusen完成签到,获得积分10
1分钟前
1分钟前
徐志豪发布了新的文献求助10
1分钟前
泡泡完成签到 ,获得积分10
1分钟前
顺心成仁完成签到 ,获得积分10
1分钟前
1分钟前
fang完成签到,获得积分0
1分钟前
奋斗鸡翅完成签到,获得积分20
1分钟前
选择性哑巴完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493741
求助须知:如何正确求助?哪些是违规求助? 4591745
关于积分的说明 14434583
捐赠科研通 4524146
什么是DOI,文献DOI怎么找? 2478673
邀请新用户注册赠送积分活动 1463681
关于科研通互助平台的介绍 1436464