Identification of Chilling Injury in Kiwifruit Using Hyperspectral Structured-Illumination Reflectance Imaging System (SIRI) with Support Vector Machine (SVM) Modelling

高光谱成像 支持向量机 化学 反射率 人工智能 鉴定(生物学) 遥感 模式识别(心理学) 生物系统 计算机视觉 光学 植物 计算机科学 生物 物理 地质学
作者
Yonghui Ge,Siying Tu
出处
期刊:Analytical Letters [Informa]
卷期号:56 (12): 2040-2052 被引量:8
标识
DOI:10.1080/00032719.2022.2153364
摘要

AbstractAccurate detection of chilling injury in kiwifruit is challenging because the symptoms are mainly manifested in the interior. This work reports a method for detecting the chilling injury of 'Hongyang' kiwifruit to provide nondestructive discrimination. Kiwifruit samples with varying levels of chilling injury were analyzed by a hyperspectral structured-illumination reflectance imaging (SIRI) system. After demodulation, direct current (DC) and alternating current (AC) images with spatial frequencies of 30, 60, and 120 m−1 were obtained and labeled as F30, F60, and F120. Predictive models were developed to optimize the preprocessing and modeling methods. Prediction models established the results of DC and AC with different spatial frequencies and were compared. The autoscale-support vector machine (SVM) models were optimal for AC at different spatial frequencies, and the multiplicative scatter correction (MSC)-SVM model was optimal for DC. The combined features of F30, F60, and F120, as well as the spectral features of DC, had better accuracy for classifying chilling injury. The optimal model of hyperspectral SIRI system for detecting chilling injury was the F30 based on combined features, with calibration accuracy of 98.1% and prediction accuracy of 94.2%. This study has shown that structured illumination had higher accuracy than uniform illumination in predicting chilling injury. Further, this approach allows the identification of kiwifruit with chilling injury using a hyperspectral structured-illumination reflectance imaging system.Keywords: Chilling injuryhyperspectral structured illumination reflectance imaging (SIRI)kiwifruitpartial least squares discriminant analysis (PLS-DA)support vector machine (SVM) Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that influenced the work reported in this paper.Additional informationFundingThis work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助ht2025采纳,获得10
刚刚
耍酷花卷发布了新的文献求助10
1秒前
微笑如冰发布了新的文献求助10
1秒前
二二二发布了新的文献求助10
1秒前
一颗柚子完成签到,获得积分10
1秒前
abc完成签到 ,获得积分10
1秒前
PMX发布了新的文献求助10
2秒前
标致小伙发布了新的文献求助10
2秒前
joysa完成签到,获得积分10
2秒前
131343完成签到,获得积分10
2秒前
FashionBoy应助慕子采纳,获得10
3秒前
3秒前
3秒前
L龙发布了新的文献求助10
4秒前
4秒前
善学以致用应助sunwending采纳,获得10
4秒前
东郭秋凌完成签到,获得积分10
4秒前
胤宸完成签到,获得积分10
5秒前
6秒前
6秒前
hohokuz完成签到,获得积分20
6秒前
一切顺遂应助Adian采纳,获得100
6秒前
6秒前
April发布了新的文献求助20
7秒前
Huaiman发布了新的文献求助10
8秒前
科研通AI5应助转角一起走采纳,获得20
8秒前
蛋炒饭完成签到,获得积分10
9秒前
执着完成签到,获得积分10
9秒前
研友_ED5GK发布了新的文献求助10
9秒前
10秒前
绿麦盲区完成签到,获得积分10
10秒前
Yvonne发布了新的文献求助10
10秒前
11秒前
11秒前
minghanl完成签到,获得积分10
12秒前
zhaomr发布了新的文献求助10
12秒前
科目三应助pbf采纳,获得20
13秒前
13秒前
13秒前
same完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762