Identification of Chilling Injury in Kiwifruit Using Hyperspectral Structured-Illumination Reflectance Imaging System (SIRI) with Support Vector Machine (SVM) Modelling

高光谱成像 支持向量机 化学 反射率 人工智能 鉴定(生物学) 遥感 模式识别(心理学) 生物系统 计算机视觉 光学 植物 计算机科学 生物 物理 地质学
作者
Yonghui Ge,Siying Tu
出处
期刊:Analytical Letters [Informa]
卷期号:56 (12): 2040-2052 被引量:8
标识
DOI:10.1080/00032719.2022.2153364
摘要

AbstractAccurate detection of chilling injury in kiwifruit is challenging because the symptoms are mainly manifested in the interior. This work reports a method for detecting the chilling injury of 'Hongyang' kiwifruit to provide nondestructive discrimination. Kiwifruit samples with varying levels of chilling injury were analyzed by a hyperspectral structured-illumination reflectance imaging (SIRI) system. After demodulation, direct current (DC) and alternating current (AC) images with spatial frequencies of 30, 60, and 120 m−1 were obtained and labeled as F30, F60, and F120. Predictive models were developed to optimize the preprocessing and modeling methods. Prediction models established the results of DC and AC with different spatial frequencies and were compared. The autoscale-support vector machine (SVM) models were optimal for AC at different spatial frequencies, and the multiplicative scatter correction (MSC)-SVM model was optimal for DC. The combined features of F30, F60, and F120, as well as the spectral features of DC, had better accuracy for classifying chilling injury. The optimal model of hyperspectral SIRI system for detecting chilling injury was the F30 based on combined features, with calibration accuracy of 98.1% and prediction accuracy of 94.2%. This study has shown that structured illumination had higher accuracy than uniform illumination in predicting chilling injury. Further, this approach allows the identification of kiwifruit with chilling injury using a hyperspectral structured-illumination reflectance imaging system.Keywords: Chilling injuryhyperspectral structured illumination reflectance imaging (SIRI)kiwifruitpartial least squares discriminant analysis (PLS-DA)support vector machine (SVM) Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that influenced the work reported in this paper.Additional informationFundingThis work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
7777135发布了新的文献求助10
2秒前
ying完成签到,获得积分10
2秒前
一昂杨完成签到,获得积分10
2秒前
大个应助孤独的绮玉采纳,获得30
2秒前
cc发布了新的文献求助10
2秒前
RMY完成签到 ,获得积分10
3秒前
3秒前
科研通AI6应助健康的海采纳,获得10
4秒前
4秒前
4秒前
赘婿应助健康的海采纳,获得10
4秒前
露似珍珠月似弓完成签到,获得积分10
4秒前
4秒前
迅速采梦发布了新的文献求助10
5秒前
呵呵禾发布了新的文献求助10
5秒前
5秒前
烂漫的访天完成签到,获得积分10
5秒前
6秒前
6秒前
liu发布了新的文献求助20
7秒前
麻油香菜发布了新的文献求助10
7秒前
葵花籽完成签到,获得积分10
7秒前
7秒前
充电宝应助rita采纳,获得10
8秒前
干净的冷安应助珍妮采纳,获得25
8秒前
自由如南发布了新的文献求助10
9秒前
10秒前
10秒前
cc完成签到,获得积分10
10秒前
英姑应助wu采纳,获得10
11秒前
义气酬海完成签到,获得积分10
11秒前
12秒前
加油kiki发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
短短大王完成签到,获得积分10
13秒前
陌路发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786