Identification of Chilling Injury in Kiwifruit Using Hyperspectral Structured-Illumination Reflectance Imaging System (SIRI) with Support Vector Machine (SVM) Modelling

高光谱成像 支持向量机 化学 反射率 人工智能 鉴定(生物学) 遥感 模式识别(心理学) 生物系统 计算机视觉 光学 植物 计算机科学 生物 物理 地质学
作者
Yonghui Ge,Siying Tu
出处
期刊:Analytical Letters [Informa]
卷期号:56 (12): 2040-2052 被引量:8
标识
DOI:10.1080/00032719.2022.2153364
摘要

AbstractAccurate detection of chilling injury in kiwifruit is challenging because the symptoms are mainly manifested in the interior. This work reports a method for detecting the chilling injury of 'Hongyang' kiwifruit to provide nondestructive discrimination. Kiwifruit samples with varying levels of chilling injury were analyzed by a hyperspectral structured-illumination reflectance imaging (SIRI) system. After demodulation, direct current (DC) and alternating current (AC) images with spatial frequencies of 30, 60, and 120 m−1 were obtained and labeled as F30, F60, and F120. Predictive models were developed to optimize the preprocessing and modeling methods. Prediction models established the results of DC and AC with different spatial frequencies and were compared. The autoscale-support vector machine (SVM) models were optimal for AC at different spatial frequencies, and the multiplicative scatter correction (MSC)-SVM model was optimal for DC. The combined features of F30, F60, and F120, as well as the spectral features of DC, had better accuracy for classifying chilling injury. The optimal model of hyperspectral SIRI system for detecting chilling injury was the F30 based on combined features, with calibration accuracy of 98.1% and prediction accuracy of 94.2%. This study has shown that structured illumination had higher accuracy than uniform illumination in predicting chilling injury. Further, this approach allows the identification of kiwifruit with chilling injury using a hyperspectral structured-illumination reflectance imaging system.Keywords: Chilling injuryhyperspectral structured illumination reflectance imaging (SIRI)kiwifruitpartial least squares discriminant analysis (PLS-DA)support vector machine (SVM) Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that influenced the work reported in this paper.Additional informationFundingThis work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子发布了新的文献求助30
刚刚
1秒前
WY完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
流浪给付研琪的求助进行了留言
1秒前
1秒前
学渣发布了新的文献求助10
1秒前
俊逸的问薇完成签到 ,获得积分10
2秒前
过时的访天完成签到 ,获得积分10
2秒前
柴郡喵完成签到,获得积分10
3秒前
3秒前
小圆不圆发布了新的文献求助10
3秒前
典雅的灵煌完成签到,获得积分10
3秒前
yyyg完成签到,获得积分10
5秒前
ZZZ完成签到,获得积分10
5秒前
雨雨雨发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
zhubin完成签到 ,获得积分10
7秒前
高高问夏发布了新的文献求助10
7秒前
笑点低蜜蜂完成签到,获得积分10
8秒前
香蕉觅云应助ProfWang采纳,获得10
8秒前
清爽老九发布了新的文献求助10
8秒前
如意发布了新的文献求助10
8秒前
所所应助神勇乐安采纳,获得10
8秒前
9秒前
yyyg发布了新的文献求助10
9秒前
9秒前
小二郎应助时刻保持质疑采纳,获得10
10秒前
i喝凉白开完成签到 ,获得积分10
10秒前
beiyue完成签到,获得积分10
10秒前
丘比特应助keyanrubbish采纳,获得10
10秒前
流浪应助付研琪采纳,获得10
11秒前
害羞鬼完成签到,获得积分10
11秒前
11秒前
韩麒嘉发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836