亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of Chilling Injury in Kiwifruit Using Hyperspectral Structured-Illumination Reflectance Imaging System (SIRI) with Support Vector Machine (SVM) Modelling

高光谱成像 支持向量机 化学 反射率 人工智能 鉴定(生物学) 遥感 模式识别(心理学) 生物系统 计算机视觉 光学 植物 计算机科学 生物 物理 地质学
作者
Yonghui Ge,Siying Tu
出处
期刊:Analytical Letters [Informa]
卷期号:56 (12): 2040-2052 被引量:7
标识
DOI:10.1080/00032719.2022.2153364
摘要

AbstractAccurate detection of chilling injury in kiwifruit is challenging because the symptoms are mainly manifested in the interior. This work reports a method for detecting the chilling injury of 'Hongyang' kiwifruit to provide nondestructive discrimination. Kiwifruit samples with varying levels of chilling injury were analyzed by a hyperspectral structured-illumination reflectance imaging (SIRI) system. After demodulation, direct current (DC) and alternating current (AC) images with spatial frequencies of 30, 60, and 120 m−1 were obtained and labeled as F30, F60, and F120. Predictive models were developed to optimize the preprocessing and modeling methods. Prediction models established the results of DC and AC with different spatial frequencies and were compared. The autoscale-support vector machine (SVM) models were optimal for AC at different spatial frequencies, and the multiplicative scatter correction (MSC)-SVM model was optimal for DC. The combined features of F30, F60, and F120, as well as the spectral features of DC, had better accuracy for classifying chilling injury. The optimal model of hyperspectral SIRI system for detecting chilling injury was the F30 based on combined features, with calibration accuracy of 98.1% and prediction accuracy of 94.2%. This study has shown that structured illumination had higher accuracy than uniform illumination in predicting chilling injury. Further, this approach allows the identification of kiwifruit with chilling injury using a hyperspectral structured-illumination reflectance imaging system.Keywords: Chilling injuryhyperspectral structured illumination reflectance imaging (SIRI)kiwifruitpartial least squares discriminant analysis (PLS-DA)support vector machine (SVM) Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that influenced the work reported in this paper.Additional informationFundingThis work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戒灵发布了新的文献求助10
2秒前
3秒前
13秒前
17秒前
18秒前
zl发布了新的文献求助10
30秒前
L_93完成签到,获得积分10
43秒前
44秒前
zl完成签到,获得积分10
44秒前
桐桐应助做实验的蘑菇采纳,获得10
45秒前
49秒前
Ting完成签到 ,获得积分10
53秒前
PhD_Lee73完成签到 ,获得积分10
59秒前
怕孤单的绿柳关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
平淡夏云发布了新的文献求助10
1分钟前
1分钟前
文欣完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助达布妞采纳,获得10
1分钟前
1分钟前
1分钟前
搜集达人应助gzy采纳,获得30
1分钟前
2分钟前
Jason发布了新的文献求助10
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
lin应助科研通管家采纳,获得300
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
李健应助Jason采纳,获得10
2分钟前
2分钟前
Li完成签到,获得积分20
2分钟前
monstar发布了新的文献求助10
2分钟前
Li发布了新的文献求助30
2分钟前
Lily完成签到,获得积分10
2分钟前
领会完成签到 ,获得积分10
2分钟前
传奇3应助Li采纳,获得10
2分钟前
2分钟前
不爱运动的戴完成签到 ,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133892
求助须知:如何正确求助?哪些是违规求助? 2784804
关于积分的说明 7768575
捐赠科研通 2440160
什么是DOI,文献DOI怎么找? 1297188
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791