Identification of Chilling Injury in Kiwifruit Using Hyperspectral Structured-Illumination Reflectance Imaging System (SIRI) with Support Vector Machine (SVM) Modelling

高光谱成像 支持向量机 化学 反射率 人工智能 鉴定(生物学) 遥感 模式识别(心理学) 生物系统 计算机视觉 光学 植物 计算机科学 生物 物理 地质学
作者
Yonghui Ge,Siying Tu
出处
期刊:Analytical Letters [Taylor & Francis]
卷期号:56 (12): 2040-2052 被引量:8
标识
DOI:10.1080/00032719.2022.2153364
摘要

AbstractAccurate detection of chilling injury in kiwifruit is challenging because the symptoms are mainly manifested in the interior. This work reports a method for detecting the chilling injury of 'Hongyang' kiwifruit to provide nondestructive discrimination. Kiwifruit samples with varying levels of chilling injury were analyzed by a hyperspectral structured-illumination reflectance imaging (SIRI) system. After demodulation, direct current (DC) and alternating current (AC) images with spatial frequencies of 30, 60, and 120 m−1 were obtained and labeled as F30, F60, and F120. Predictive models were developed to optimize the preprocessing and modeling methods. Prediction models established the results of DC and AC with different spatial frequencies and were compared. The autoscale-support vector machine (SVM) models were optimal for AC at different spatial frequencies, and the multiplicative scatter correction (MSC)-SVM model was optimal for DC. The combined features of F30, F60, and F120, as well as the spectral features of DC, had better accuracy for classifying chilling injury. The optimal model of hyperspectral SIRI system for detecting chilling injury was the F30 based on combined features, with calibration accuracy of 98.1% and prediction accuracy of 94.2%. This study has shown that structured illumination had higher accuracy than uniform illumination in predicting chilling injury. Further, this approach allows the identification of kiwifruit with chilling injury using a hyperspectral structured-illumination reflectance imaging system.Keywords: Chilling injuryhyperspectral structured illumination reflectance imaging (SIRI)kiwifruitpartial least squares discriminant analysis (PLS-DA)support vector machine (SVM) Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that influenced the work reported in this paper.Additional informationFundingThis work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐浠发布了新的文献求助10
刚刚
舒心的满天完成签到 ,获得积分10
1秒前
cyanpomelo发布了新的文献求助10
1秒前
丘比特应助若尘采纳,获得10
1秒前
2秒前
CodeCraft应助yangfeidong采纳,获得10
3秒前
chenshiyi185完成签到,获得积分10
4秒前
快乐的胖子应助三哥采纳,获得30
4秒前
6秒前
斯文钢笔完成签到 ,获得积分10
7秒前
8秒前
山雀完成签到,获得积分10
8秒前
BINGBONG关注了科研通微信公众号
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
浮游应助11采纳,获得10
12秒前
yangfeidong发布了新的文献求助10
14秒前
14秒前
15秒前
心猿应助g0123采纳,获得10
16秒前
16秒前
yuilcl发布了新的文献求助10
17秒前
wbshore发布了新的文献求助10
19秒前
19秒前
聪慧的正豪应助郑浩采纳,获得10
20秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
orixero应助巧乐兹采纳,获得10
24秒前
瓦力文发布了新的文献求助10
24秒前
27秒前
生动大白菜真实的钥匙完成签到 ,获得积分10
28秒前
28秒前
CipherSage应助yuilcl采纳,获得10
29秒前
香蕉觅云应助嗬娜采纳,获得10
29秒前
坦率网络发布了新的文献求助10
29秒前
Jasper应助小巩采纳,获得10
30秒前
31秒前
32秒前
33秒前
lym发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941102
求助须知:如何正确求助?哪些是违规求助? 4207170
关于积分的说明 13076816
捐赠科研通 3985940
什么是DOI,文献DOI怎么找? 2182404
邀请新用户注册赠送积分活动 1197920
关于科研通互助平台的介绍 1110281