Improving dynamic gesture recognition in untrimmed videos by an online lightweight framework and a new gesture dataset ZJUGesture

手势 计算机科学 手势识别 人工智能 语音识别 计算机视觉
作者
Chao Xu,Xia Wu,Mengmeng Wang,Feng Qiu,Yong Liu,Jun Ren
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:523: 58-68 被引量:10
标识
DOI:10.1016/j.neucom.2022.12.022
摘要

Human–computer interaction technology brings great convenience to people, and dynamic gesture recognition makes it possible for a man to interact naturally with a machine. However, recognizing gestures quickly and precisely in untrimmed videos remains a challenge in real-world systems since: (1) It is challenging to locate the temporal boundaries of performing gestures; (2) There are significant differences in performing gestures among different people, resulting in a variety of gestures; (3) There must be a trade-off between the accuracy and the computational consumption. In this work, we propose an online lightweight two-stage framework, including a detection module and a gesture recognition module, to precisely detect and classify dynamic gestures in untrimmed videos. Specifically, we first design a low-power detection module to locate gestures in time series, then a temporal relational reasoning module is employed for gesture recognition. Moreover, we present a new dynamic gesture dataset named ZJUGesture, which contains nine classes of common gestures in various scenarios. Extensive experiments on the proposed ZJUGesture and 20-bn-Jester dataset demonstrate the attractive performance of our method with high accuracy and a low computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lorryliu发布了新的文献求助10
刚刚
1秒前
灵巧代柔完成签到,获得积分10
2秒前
2秒前
4秒前
缓慢听枫完成签到,获得积分10
4秒前
wanci应助kevin_l采纳,获得10
4秒前
慕青应助申成宇采纳,获得10
4秒前
jessicazhong发布了新的文献求助10
4秒前
Joyce完成签到,获得积分10
5秒前
6秒前
在水一方应助完美的雨泽采纳,获得10
6秒前
陈皮发布了新的文献求助10
6秒前
木木林完成签到,获得积分20
6秒前
honey完成签到,获得积分10
7秒前
森林完成签到,获得积分10
7秒前
song发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
木木林发布了新的文献求助10
10秒前
刘娟发布了新的文献求助10
11秒前
所所应助lorryliu采纳,获得10
12秒前
wang完成签到,获得积分20
12秒前
13秒前
14秒前
小憨憨发布了新的文献求助10
14秒前
14秒前
渴望者发布了新的文献求助10
14秒前
15秒前
Hello应助ananan采纳,获得10
16秒前
小蘑菇应助小咸鱼采纳,获得10
16秒前
称心乐枫发布了新的文献求助10
17秒前
17秒前
悲凉的新筠完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
科研小白完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547101
求助须知:如何正确求助?哪些是违规求助? 3978164
关于积分的说明 12318204
捐赠科研通 3646677
什么是DOI,文献DOI怎么找? 2008295
邀请新用户注册赠送积分活动 1043874
科研通“疑难数据库(出版商)”最低求助积分说明 932515