压电
材料科学
再生(生物学)
复合材料
细胞生物学
生物
作者
Chunyu Yang,Jianying Ji,Yujia Lv,Zhou Li,Dan Luo
出处
期刊:Nanomaterials
[MDPI AG]
日期:2022-12-09
卷期号:12 (24): 4386-4386
被引量:11
摘要
Bone injuries are common in clinical practice. Given the clear disadvantages of autologous bone grafting, more efficient and safer bone grafts need to be developed. Bone is a multidirectional and anisotropic piezoelectric material that exhibits an electrical microenvironment; therefore, electrical signals play a very important role in the process of bone repair, which can effectively promote osteoblast differentiation, migration, and bone regeneration. Piezoelectric materials can generate electricity under mechanical stress without requiring an external power supply; therefore, using it as a bone implant capable of harnessing the body's kinetic energy to generate the electrical signals needed for bone growth is very promising for bone regeneration. At the same time, devices composed of piezoelectric material using electromechanical conversion technology can effectively monitor the structural health of bone, which facilitates the adjustment of the treatment plan at any time. In this paper, the mechanism and classification of piezoelectric materials and their applications in the cell, tissue, sensing, and repair indicator monitoring aspects in the process of bone regeneration are systematically reviewed.
科研通智能强力驱动
Strongly Powered by AbleSci AI