MetaScenario: A Framework for Driving Scenario Data Description, Storage and Indexing

计算机科学 搜索引擎索引 数据挖掘 过程(计算) 抽象 原始数据 任务(项目管理) 情报检索 认识论 操作系统 哲学 经济 管理 程序设计语言
作者
Cheng Chang,Dongpu Cao,Long Chen,Kui Su,Kuifeng Su,Yuelong Su,Fei-Yue Wang,Jue Wang,Ping Wang,Jinyu Wei,Gangxiong Wu,Xiangbin Wu,Huile Xu,Nanning Zheng,Zhiheng Li
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 1156-1175 被引量:8
标识
DOI:10.1109/tiv.2022.3215503
摘要

Autonomous driving related researches require the analysis and usage of massive amounts of driving scenario data. Compared to raw data collected by sensors, scenario data provide a preliminary abstraction of driving tasks and processes, explicitly integrate information about the road environment and the dynamic and static attributes of traffic participants, making it easier to conduct task understanding and decision making. However, many existing driving scenario datasets have the following two problems. First, it is not clear which data fields need to be recorded for driving scenarios. The data storage formats and organization standards are inconsistent. Second, the datasets cannot establish driving scenario indexing effectively. Existing datasets are sparsely annotated and difficult to index, which is detrimental to data sampling and extraction for machine learning process, thus hindering efficient fusion and reuse. In this paper, we propose MetaScenario, a framework for driving scenario data. We describe driving scenarios and design the centralized and unified data framework for the storage, processing, and indexing of scenario data based on relational database. The concept of atom scenario is proposed and characterized using semantic graphs. We also annotate and classify behaviors and interactions of traffic participants in atom scenarios by extracting the spatiotemporal evolution of semantic information. The annotation facilitates the indexing and extraction of data. The scenario datasets are further evaluated via the data distribution and annotation statistics. MetaScenario can provide researchers with convenient tools for scenario data extraction and important analytical references.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聂志鹏发布了新的文献求助10
刚刚
珑仔发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
wanci应助活泼乌采纳,获得10
2秒前
在水一方应助自己采纳,获得10
2秒前
2秒前
情怀应助无氟超疏水涂层采纳,获得10
2秒前
超帅鸣凤发布了新的文献求助10
3秒前
4秒前
5秒前
moonnnnnnn完成签到 ,获得积分10
7秒前
8秒前
8秒前
水风清处发布了新的文献求助10
9秒前
无极微光应助姜友舜采纳,获得20
10秒前
cc发布了新的文献求助30
10秒前
科目三应助qq采纳,获得10
10秒前
Ryo发布了新的文献求助30
11秒前
哈哈完成签到 ,获得积分10
12秒前
田様应助emma采纳,获得30
13秒前
hihi发布了新的文献求助10
13秒前
14秒前
TGM_Hedwig完成签到,获得积分10
14秒前
冷艳的鸣凤完成签到,获得积分20
14秒前
16秒前
量子星尘发布了新的文献求助30
16秒前
Orange应助wxd采纳,获得10
17秒前
17秒前
liunerd完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
英俊的铭应助密斯特蟹采纳,获得10
19秒前
20秒前
豆豆发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
周周发布了新的文献求助10
20秒前
寂寞的羽毛完成签到,获得积分20
20秒前
21秒前
彭于晏应助CY采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369