Machine learning and molecular simulation ascertain antimicrobial peptide against Klebsiella pneumoniae from public database

抗菌肽 生物信息学 肺炎克雷伯菌 抗菌剂 UniProt公司 鲍曼不动杆菌 对接(动物) 计算生物学 生物 肽库 化学 大肠杆菌 生物化学 微生物学 细菌 肽序列 基因 医学 遗传学 护理部 铜绿假单胞菌
作者
Ahmad Al-Khdhairawi,Danish Sanuri,Rahmad Akbar,Su Datt Lam,Shobana Sugumar,Nazlina Ibrahim,Sylvia Chieng,Fareed Sairi
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:102: 107800-107800 被引量:9
标识
DOI:10.1016/j.compbiolchem.2022.107800
摘要

Antimicrobial peptides (AMPs) are short peptides with a broad spectrum of antimicrobial activity. They play a key role in the host innate immunity of many organisms. The growing threat of microorganisms resistant to antimicrobial agents and the lack of new commercially available antibiotics have made in silico discovery of AMPs increasingly important. Machine learning (ML) has improved the speed and efficiency of AMP discovery while reducing the cost of experimental approaches. Despite various ML platforms developed, there is still a lack of integrative use of ML platforms for AMP discovery from publicly available protein databases. Therefore, our study aims to screen potential AMPs with antibiofilm properties from databases using ML platforms, followed by protein-peptide molecular docking analysis and molecular dynamics (MD) simulations. A total of 5850 peptides classified as non-AMP were screened from UniProtKB and analyzed using various online ML platforms (e.g., CAMPr3, DBAASP, dPABBs, Hemopred, and ToxinPred). Eight potential AMP peptides against Klebsiella pneumoniae with antibiofilm, non-toxic and non-hemolytic properties were then docked to MrkH, a transcriptional regulator of type 3 fimbriae involved in biofilm formation. Five of eight peptides bound more strongly than the native MrkH ligand when analyzed using HADDOCK and HPEPDOCK. Following the docking studies, our MD simulated that a Neuropeptide B (Peptide 3) bind strongly to the MrkH active sites. The discovery of putative AMPs that exceed the binding energies of the native ligand underscores the utility of the combined ML and molecular simulation strategies for discovering novel AMPs with antibiofilm properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝吹雪发布了新的文献求助10
刚刚
ceeray23应助科研通管家采纳,获得10
刚刚
duanhuiyuan应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
九九九发布了新的文献求助10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
1秒前
duanhuiyuan应助科研通管家采纳,获得10
1秒前
duanhuiyuan应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
cdercder应助科研通管家采纳,获得30
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
lisa发布了新的文献求助10
2秒前
2秒前
tmr完成签到,获得积分10
3秒前
Valky发布了新的文献求助10
6秒前
8秒前
8秒前
Owen应助艾米采纳,获得10
10秒前
求助完成签到 ,获得积分10
10秒前
菠萝吹雪完成签到,获得积分10
11秒前
lisa完成签到,获得积分10
12秒前
Emilia完成签到,获得积分10
13秒前
14秒前
15秒前
孤竹雅弦完成签到,获得积分10
15秒前
16秒前
CC完成签到,获得积分20
16秒前
艾米完成签到,获得积分20
17秒前
开朗的菲鹰完成签到,获得积分10
17秒前
中和皇极应助Valky采纳,获得10
18秒前
tommyliu完成签到,获得积分10
21秒前
xmsswph发布了新的文献求助10
21秒前
21秒前
山鲁佐德爱文献完成签到 ,获得积分10
22秒前
大胆无春发布了新的文献求助10
23秒前
孤独惜海完成签到,获得积分20
23秒前
猪蹄完成签到,获得积分10
24秒前
科目三应助九九九采纳,获得10
24秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700