Dual Wavelet Attention Networks for Image Classification

计算机科学 小波 联营 模式识别(心理学) 人工智能 哈尔小波转换 频道(广播) 光学(聚焦) 特征(语言学) 数据挖掘 离散小波变换 小波变换 光学 物理 哲学 语言学 计算机网络
作者
Yuting Yang,Licheng Jiao,Xu Liu,Fang Liu,Shuyuan Yang,Lingling Li,Puhua Chen,Xiufang Li,Zhongjian Huang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (4): 1899-1910 被引量:54
标识
DOI:10.1109/tcsvt.2022.3218735
摘要

Global average pooling (GAP) plays an important role in traditional channel attention. However, there is the disadvantage of insufficient information to use the result of GAP as the channel scalar. At the same time, the existing spatial attention models focus on the areas of interest using average pooling or convolutional networks, but there is a loss of feature information and neglect of the structural feature. In this paper, dual wavelet attention is proposed, which can effectively alleviate the aforementioned problems and enhance the representation ability of CNNs. Firstly, the equivalence between the sum of the low-frequency subband coefficients of 2D DWT (Haar) and GAP is proved. On this basis, the statistical characteristics of low-frequency and high-frequency subbands are effectively combined to obtain the channel scalars, which can better measure the importance of each channel. In addition, 2D DWT can effectively capture the approximate and detailed structural features. Thus, wavelet spatial attention is proposed, which can effectively focus on the key spatial structural features. Different from traditional spatial attention, it can better curve the structural and spatial attention for different channels. The experiments are verified on four natural image data sets and three remote sensing scene classification data sets, which shows the effectiveness and versatility of the proposed methods. The code of this paper will be available at https://github.com/yutinyang/DWAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎完成签到,获得积分20
刚刚
Jackson_Cai完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
天天下文献完成签到 ,获得积分10
2秒前
2秒前
2秒前
温暖书雪完成签到,获得积分10
2秒前
FunnyL发布了新的文献求助10
2秒前
嘟嘟发布了新的文献求助10
3秒前
orixero应助晕倒一下采纳,获得10
3秒前
英俊水池完成签到,获得积分10
3秒前
溪水完成签到 ,获得积分10
3秒前
飞蚁完成签到,获得积分10
3秒前
YY完成签到,获得积分10
3秒前
4秒前
5秒前
chengli完成签到,获得积分10
5秒前
岁岁完成签到 ,获得积分10
5秒前
tangyong完成签到,获得积分10
6秒前
Japrin完成签到,获得积分10
6秒前
星辰大海完成签到,获得积分10
7秒前
charon完成签到 ,获得积分10
7秒前
大魁完成签到,获得积分10
7秒前
心悦SCI完成签到,获得积分10
7秒前
白日幻想家完成签到 ,获得积分10
7秒前
stephanine完成签到 ,获得积分10
8秒前
fan051500完成签到,获得积分10
8秒前
Queena完成签到,获得积分10
9秒前
woodword发布了新的文献求助10
9秒前
SCO完成签到,获得积分10
9秒前
zlf发布了新的文献求助10
9秒前
偏遇完成签到,获得积分10
9秒前
9秒前
雨中客完成签到,获得积分10
9秒前
英俊的铭应助人间风采纳,获得10
9秒前
teargasxq完成签到,获得积分20
10秒前
不想上班了完成签到,获得积分10
11秒前
崔尔蓉完成签到,获得积分10
11秒前
自觉沛文完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883