Dual Wavelet Attention Networks for Image Classification

计算机科学 小波 联营 模式识别(心理学) 人工智能 哈尔小波转换 频道(广播) 光学(聚焦) 特征(语言学) 数据挖掘 离散小波变换 小波变换 光学 物理 哲学 语言学 计算机网络
作者
Yuting Yang,Licheng Jiao,Xu Liu,Fang Liu,Shuyuan Yang,Lingling Li,Puhua Chen,Xiufang Li,Zhongjian Huang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (4): 1899-1910 被引量:20
标识
DOI:10.1109/tcsvt.2022.3218735
摘要

Global average pooling (GAP) plays an important role in traditional channel attention. However, there is the disadvantage of insufficient information to use the result of GAP as the channel scalar. At the same time, the existing spatial attention models focus on the areas of interest using average pooling or convolutional networks, but there is a loss of feature information and neglect of the structural feature. In this paper, dual wavelet attention is proposed, which can effectively alleviate the aforementioned problems and enhance the representation ability of CNNs. Firstly, the equivalence between the sum of the low-frequency subband coefficients of 2D DWT (Haar) and GAP is proved. On this basis, the statistical characteristics of low-frequency and high-frequency subbands are effectively combined to obtain the channel scalars, which can better measure the importance of each channel. In addition, 2D DWT can effectively capture the approximate and detailed structural features. Thus, wavelet spatial attention is proposed, which can effectively focus on the key spatial structural features. Different from traditional spatial attention, it can better curve the structural and spatial attention for different channels. The experiments are verified on four natural image data sets and three remote sensing scene classification data sets, which shows the effectiveness and versatility of the proposed methods. The code of this paper will be available at https://github.com/yutinyang/DWAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米酒完成签到,获得积分10
刚刚
step_stone给step_stone的求助进行了留言
刚刚
乐乐应助ayin采纳,获得10
1秒前
无花果应助hhh采纳,获得10
3秒前
叁壹粑粑完成签到,获得积分10
4秒前
酷酷碧完成签到,获得积分10
4秒前
5秒前
磕盐民工完成签到,获得积分10
6秒前
6秒前
忘羡222发布了新的文献求助20
6秒前
我是老大应助TT采纳,获得10
8秒前
8秒前
8秒前
雪鸽鸽完成签到,获得积分10
9秒前
完美世界应助开心青旋采纳,获得10
9秒前
LD完成签到 ,获得积分10
11秒前
xjy完成签到 ,获得积分10
11秒前
qzaima完成签到,获得积分10
11秒前
12秒前
xueshufengbujue完成签到,获得积分10
12秒前
楼寒天发布了新的文献求助10
12秒前
13秒前
科研通AI5应助111111111采纳,获得10
14秒前
14秒前
sunsunsun完成签到,获得积分10
14秒前
哎嘤斯坦完成签到,获得积分10
16秒前
16秒前
sweetbearm应助潦草采纳,获得10
17秒前
sunsunsun发布了新的文献求助10
17秒前
酷波er应助Mars采纳,获得10
18秒前
迪士尼在逃后母完成签到,获得积分10
18秒前
18秒前
我是老大应助su采纳,获得10
19秒前
hhh发布了新的文献求助10
20秒前
21秒前
科研通AI5应助魏伯安采纳,获得10
22秒前
22秒前
神可馨完成签到 ,获得积分10
23秒前
Hangerli发布了新的文献求助20
23秒前
HealthyCH完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824