计算机科学
小波
联营
模式识别(心理学)
人工智能
哈尔小波转换
频道(广播)
光学(聚焦)
特征(语言学)
数据挖掘
离散小波变换
小波变换
光学
物理
哲学
语言学
计算机网络
作者
Yuting Yang,Licheng Jiao,Xu Liu,Fang Liu,Shuyuan Yang,Lingling Li,Puhua Chen,Xiufang Li,Zhongjian Huang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology
[Institute of Electrical and Electronics Engineers]
日期:2022-11-04
卷期号:33 (4): 1899-1910
被引量:20
标识
DOI:10.1109/tcsvt.2022.3218735
摘要
Global average pooling (GAP) plays an important role in traditional channel attention. However, there is the disadvantage of insufficient information to use the result of GAP as the channel scalar. At the same time, the existing spatial attention models focus on the areas of interest using average pooling or convolutional networks, but there is a loss of feature information and neglect of the structural feature. In this paper, dual wavelet attention is proposed, which can effectively alleviate the aforementioned problems and enhance the representation ability of CNNs. Firstly, the equivalence between the sum of the low-frequency subband coefficients of 2D DWT (Haar) and GAP is proved. On this basis, the statistical characteristics of low-frequency and high-frequency subbands are effectively combined to obtain the channel scalars, which can better measure the importance of each channel. In addition, 2D DWT can effectively capture the approximate and detailed structural features. Thus, wavelet spatial attention is proposed, which can effectively focus on the key spatial structural features. Different from traditional spatial attention, it can better curve the structural and spatial attention for different channels. The experiments are verified on four natural image data sets and three remote sensing scene classification data sets, which shows the effectiveness and versatility of the proposed methods. The code of this paper will be available at https://github.com/yutinyang/DWAN .
科研通智能强力驱动
Strongly Powered by AbleSci AI