Dual Wavelet Attention Networks for Image Classification

计算机科学 小波 联营 模式识别(心理学) 人工智能 哈尔小波转换 频道(广播) 光学(聚焦) 特征(语言学) 数据挖掘 离散小波变换 小波变换 光学 物理 哲学 语言学 计算机网络
作者
Yuting Yang,Licheng Jiao,Xu Liu,Fang Liu,Shuyuan Yang,Lingling Li,Puhua Chen,Xiufang Li,Zhongjian Huang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (4): 1899-1910 被引量:28
标识
DOI:10.1109/tcsvt.2022.3218735
摘要

Global average pooling (GAP) plays an important role in traditional channel attention. However, there is the disadvantage of insufficient information to use the result of GAP as the channel scalar. At the same time, the existing spatial attention models focus on the areas of interest using average pooling or convolutional networks, but there is a loss of feature information and neglect of the structural feature. In this paper, dual wavelet attention is proposed, which can effectively alleviate the aforementioned problems and enhance the representation ability of CNNs. Firstly, the equivalence between the sum of the low-frequency subband coefficients of 2D DWT (Haar) and GAP is proved. On this basis, the statistical characteristics of low-frequency and high-frequency subbands are effectively combined to obtain the channel scalars, which can better measure the importance of each channel. In addition, 2D DWT can effectively capture the approximate and detailed structural features. Thus, wavelet spatial attention is proposed, which can effectively focus on the key spatial structural features. Different from traditional spatial attention, it can better curve the structural and spatial attention for different channels. The experiments are verified on four natural image data sets and three remote sensing scene classification data sets, which shows the effectiveness and versatility of the proposed methods. The code of this paper will be available at https://github.com/yutinyang/DWAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿三的风光完成签到,获得积分20
刚刚
Violet完成签到 ,获得积分20
1秒前
2秒前
dreamboat发布了新的文献求助10
3秒前
殴打阿达完成签到,获得积分10
3秒前
丁真先生完成签到,获得积分10
3秒前
Esfuerzo完成签到 ,获得积分10
4秒前
小蒋完成签到,获得积分10
4秒前
香蕉觅云应助hh采纳,获得10
5秒前
wujuan1606完成签到 ,获得积分10
5秒前
英姑应助张桐赫采纳,获得10
7秒前
T_MC郭发布了新的文献求助10
7秒前
甲乙驾驭完成签到,获得积分10
7秒前
8秒前
8秒前
YD完成签到 ,获得积分10
10秒前
甲乙驾驭发布了新的文献求助10
10秒前
满座发布了新的文献求助10
11秒前
乐乐应助殴打阿达采纳,获得10
12秒前
Rondab应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
Rondab应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
张易发布了新的文献求助30
13秒前
Rondab应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
Rondab应助科研通管家采纳,获得10
13秒前
慕青应助Uuuuuuumi采纳,获得10
15秒前
丘比特应助橙子采纳,获得10
15秒前
田様应助racill采纳,获得10
16秒前
Atom完成签到,获得积分10
19秒前
20秒前
20秒前
科研通AI2S应助皮崇知采纳,获得10
22秒前
缥缈的背包完成签到 ,获得积分10
24秒前
临澈完成签到,获得积分10
24秒前
酷波zai发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999331
求助须知:如何正确求助?哪些是违规求助? 3538658
关于积分的说明 11274856
捐赠科研通 3277581
什么是DOI,文献DOI怎么找? 1807615
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810101