钴
催化作用
过电位
可逆氢电极
双功能
煅烧
三聚氰胺
电化学
材料科学
电催化剂
限制电流
无机化学
化学
化学工程
电极
物理化学
有机化学
参比电极
工程类
作者
Lian‐Hua Xu,Wenju Wang,Xueji Zhang,Serge Cosnier,Robert S. Marks,Dan Shan
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:14 (48): 17995-18002
被引量:7
摘要
Due to the complexity of the synthetic process of cobalt phosphides (CoP), ongoing efforts concentrate on simplifying the preparation process of CoP. In this work, amino tris(methylene phosphonic acid) (ATMP, L1) and melamine (MA, L2) are assembled into two-dimensional (2D) organic nanostructures by hydrogen bonding and ionic interactions via a supramolecular assembly, which greatly weakens the coordination ability of L1 with Co2+. As the introduced L2 is rich in carbon and nitrogen, it allows the cobalt-organophosphate complex to be placed under a strongly reducing atmosphere during the high-temperature calcination process to achieve an in situ phosphating purpose. The resulting catalyst (N-CoP/NC) exhibits the sought-after enhanced oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) performance. For the ORR in 0.1 M KOH, an enhanced onset potential (0.908 V vs. RHE) and diffusion limiting current (6.280 mA cm-2) can be obtained, which is comparable to those of 20% Pt/C (0.911 V vs. RHE, 5.380 mA cm-2). For the HER in 0.5 M H2SO4, an overpotential of 150 mV is required to drive a current of 10 mA cm-2. Moreover, Density Functional Theory (DFT) calculations reveal the catalytic pathway of N-CoP/NC.
科研通智能强力驱动
Strongly Powered by AbleSci AI