Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection

计算机科学 突出 对抗制 稳健性(进化) 人工智能 目标检测 对比度(视觉) 公制(单位) 透视图(图形) 模式识别(心理学) 机器学习 运营管理 生物化学 基因 经济 化学
作者
Ruijun Gao,Qing Guo,Felix Juefei-Xu,Hongkai Yu,Huazhu Fu,Wei Feng,Yang Liu,Song Wang
标识
DOI:10.1109/cvpr52688.2022.00219
摘要

Co-salient object detection (CoSOD) has recently achieved significant progress and played a key role in retrieval-related tasks. However, it inevitably poses an entirely new safety and security issue, i.e., highly personal and sensitive content can potentially be extracting by powerful CoSOD methods. In this paper, we address this problem from the perspective of adversarial attacks and identify a novel task: adversarial co-saliency attack. Specially, given an image selected from a group of images containing some common and salient objects, we aim to generate an adversarial version that can mislead CoSOD methods to predict incorrect co-salient regions. Note that, compared with general white-box adversarial attacks for classification, this new task faces two additional challenges: (1) low success rate due to the diverse appearance of images in the group; (2) low transferability across CoSOD methods due to the considerable difference between CoSOD pipelines. To address these challenges, we propose the very first blackbox joint adversarial exposure and noise attack (Jadena), where we jointly and locally tune the exposure and additive perturbations of the image according to a newly designed high-feature-level contrast-sensitive loss function. Our method, without any information on the state-of-the-art CoSOD methods, leads to significant performance degradation on various co-saliency detection datasets and makes the co-salient objects undetectable. This can have strong practical benefits in properly securing the large number of personal photos currently shared on the Internet. Moreover, our method is potential to be utilized as a metric for evaluating the robustness of CoSOD methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助不会取名字采纳,获得10
1秒前
搜集达人应助口袋小镇采纳,获得10
1秒前
小鱼发布了新的文献求助10
1秒前
乐乐应助飞快的映菱采纳,获得10
2秒前
然来溪发布了新的文献求助10
2秒前
2秒前
英姑应助熊猫采纳,获得10
2秒前
丰富的高山完成签到,获得积分10
2秒前
2秒前
ETJ完成签到,获得积分10
2秒前
止观完成签到,获得积分10
2秒前
chenhui发布了新的文献求助10
2秒前
夏夜晚风完成签到,获得积分10
3秒前
新开完成签到,获得积分10
3秒前
自由的雅旋完成签到 ,获得积分10
4秒前
朵拉A梦发布了新的文献求助30
4秒前
4秒前
愉快的夏菡完成签到,获得积分10
4秒前
Su完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
6秒前
8888拉发布了新的文献求助10
6秒前
悠悠发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
健壮的饼干完成签到,获得积分10
7秒前
研友_ZegMrL发布了新的文献求助10
8秒前
8秒前
Ai1412发布了新的文献求助10
8秒前
如沐风完成签到,获得积分10
9秒前
9秒前
Crazykk完成签到,获得积分10
9秒前
nianxunxi完成签到,获得积分10
10秒前
Tindra发布了新的文献求助10
10秒前
LewisAcid应助小河采纳,获得20
11秒前
chenhui完成签到,获得积分10
11秒前
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587292
求助须知:如何正确求助?哪些是违规求助? 4670431
关于积分的说明 14782816
捐赠科研通 4622441
什么是DOI,文献DOI怎么找? 2531237
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066