Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection

计算机科学 突出 对抗制 稳健性(进化) 人工智能 目标检测 对比度(视觉) 公制(单位) 透视图(图形) 模式识别(心理学) 机器学习 运营管理 生物化学 基因 经济 化学
作者
Ruijun Gao,Qing Guo,Felix Juefei-Xu,Hongkai Yu,Huazhu Fu,Wei Feng,Yang Liu,Song Wang
标识
DOI:10.1109/cvpr52688.2022.00219
摘要

Co-salient object detection (CoSOD) has recently achieved significant progress and played a key role in retrieval-related tasks. However, it inevitably poses an entirely new safety and security issue, i.e., highly personal and sensitive content can potentially be extracting by powerful CoSOD methods. In this paper, we address this problem from the perspective of adversarial attacks and identify a novel task: adversarial co-saliency attack. Specially, given an image selected from a group of images containing some common and salient objects, we aim to generate an adversarial version that can mislead CoSOD methods to predict incorrect co-salient regions. Note that, compared with general white-box adversarial attacks for classification, this new task faces two additional challenges: (1) low success rate due to the diverse appearance of images in the group; (2) low transferability across CoSOD methods due to the considerable difference between CoSOD pipelines. To address these challenges, we propose the very first blackbox joint adversarial exposure and noise attack (Jadena), where we jointly and locally tune the exposure and additive perturbations of the image according to a newly designed high-feature-level contrast-sensitive loss function. Our method, without any information on the state-of-the-art CoSOD methods, leads to significant performance degradation on various co-saliency detection datasets and makes the co-salient objects undetectable. This can have strong practical benefits in properly securing the large number of personal photos currently shared on the Internet. Moreover, our method is potential to be utilized as a metric for evaluating the robustness of CoSOD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得30
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
alter_mu应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
健忘的飞雪完成签到,获得积分10
2秒前
wwwww发布了新的文献求助10
2秒前
传奇3应助稀奇采纳,获得10
2秒前
3秒前
4秒前
4秒前
4秒前
文艺的初南完成签到 ,获得积分10
7秒前
lt0217发布了新的文献求助10
7秒前
zhang发布了新的文献求助10
8秒前
9秒前
舒适的石头完成签到,获得积分10
10秒前
科研通AI2S应助木偶采纳,获得10
10秒前
聪仔完成签到,获得积分20
10秒前
11秒前
12秒前
苗条的代梅完成签到,获得积分10
12秒前
耀阳完成签到 ,获得积分10
13秒前
聪仔发布了新的文献求助10
13秒前
安然发布了新的文献求助20
13秒前
陆佰发布了新的文献求助10
14秒前
15秒前
16秒前
老实汉堡完成签到 ,获得积分10
17秒前
褚访云完成签到,获得积分10
17秒前
DrWang发布了新的文献求助10
17秒前
畅快不平发布了新的文献求助10
18秒前
18秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141588
求助须知:如何正确求助?哪些是违规求助? 2792521
关于积分的说明 7803368
捐赠科研通 2448740
什么是DOI,文献DOI怎么找? 1302918
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240