Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection

计算机科学 突出 对抗制 稳健性(进化) 人工智能 目标检测 对比度(视觉) 公制(单位) 透视图(图形) 模式识别(心理学) 机器学习 运营管理 生物化学 基因 经济 化学
作者
Ruijun Gao,Qing Guo,Felix Juefei-Xu,Hongkai Yu,Huazhu Fu,Wei Feng,Yang Liu,Song Wang
标识
DOI:10.1109/cvpr52688.2022.00219
摘要

Co-salient object detection (CoSOD) has recently achieved significant progress and played a key role in retrieval-related tasks. However, it inevitably poses an entirely new safety and security issue, i.e., highly personal and sensitive content can potentially be extracting by powerful CoSOD methods. In this paper, we address this problem from the perspective of adversarial attacks and identify a novel task: adversarial co-saliency attack. Specially, given an image selected from a group of images containing some common and salient objects, we aim to generate an adversarial version that can mislead CoSOD methods to predict incorrect co-salient regions. Note that, compared with general white-box adversarial attacks for classification, this new task faces two additional challenges: (1) low success rate due to the diverse appearance of images in the group; (2) low transferability across CoSOD methods due to the considerable difference between CoSOD pipelines. To address these challenges, we propose the very first blackbox joint adversarial exposure and noise attack (Jadena), where we jointly and locally tune the exposure and additive perturbations of the image according to a newly designed high-feature-level contrast-sensitive loss function. Our method, without any information on the state-of-the-art CoSOD methods, leads to significant performance degradation on various co-saliency detection datasets and makes the co-salient objects undetectable. This can have strong practical benefits in properly securing the large number of personal photos currently shared on the Internet. Moreover, our method is potential to be utilized as a metric for evaluating the robustness of CoSOD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joker_Li完成签到,获得积分10
刚刚
贺兰鸵鸟完成签到,获得积分10
刚刚
伶俐一曲完成签到,获得积分10
1秒前
777完成签到,获得积分10
1秒前
1秒前
1秒前
ye完成签到,获得积分10
1秒前
2秒前
壮观的垣完成签到,获得积分10
2秒前
火狐狸kc完成签到,获得积分10
2秒前
Alanni完成签到 ,获得积分10
2秒前
lcc李川川发布了新的文献求助10
2秒前
鲨鱼辣椒完成签到,获得积分10
2秒前
luoziwuhui完成签到,获得积分10
3秒前
cara完成签到,获得积分10
3秒前
李健的小迷弟应助suyu采纳,获得10
3秒前
科研通AI6应助eco采纳,获得10
3秒前
任梓宁发布了新的文献求助10
3秒前
风信子发布了新的文献求助10
3秒前
男男完成签到,获得积分10
3秒前
4秒前
4秒前
愉快的孤容完成签到,获得积分10
5秒前
南城忆潇湘完成签到,获得积分10
5秒前
deng完成签到 ,获得积分10
5秒前
哈哈完成签到,获得积分10
6秒前
12138完成签到,获得积分10
6秒前
6秒前
淡然柚子发布了新的文献求助10
6秒前
糊糊完成签到 ,获得积分10
6秒前
火星上的柏柳完成签到 ,获得积分10
6秒前
qqdm完成签到 ,获得积分0
7秒前
7秒前
蘅大爷完成签到,获得积分10
7秒前
zhangjin2969完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
小诗完成签到,获得积分10
8秒前
8秒前
大胆笑翠完成签到,获得积分10
8秒前
pluto完成签到,获得积分0
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118540
求助须知:如何正确求助?哪些是违规求助? 4324484
关于积分的说明 13472435
捐赠科研通 4157565
什么是DOI,文献DOI怎么找? 2278471
邀请新用户注册赠送积分活动 1280221
关于科研通互助平台的介绍 1218949