已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection

计算机科学 突出 对抗制 稳健性(进化) 人工智能 目标检测 对比度(视觉) 公制(单位) 透视图(图形) 模式识别(心理学) 机器学习 运营管理 生物化学 基因 经济 化学
作者
Ruijun Gao,Qing Guo,Felix Juefei-Xu,Hongkai Yu,Huazhu Fu,Wei Feng,Yang Liu,Song Wang
标识
DOI:10.1109/cvpr52688.2022.00219
摘要

Co-salient object detection (CoSOD) has recently achieved significant progress and played a key role in retrieval-related tasks. However, it inevitably poses an entirely new safety and security issue, i.e., highly personal and sensitive content can potentially be extracting by powerful CoSOD methods. In this paper, we address this problem from the perspective of adversarial attacks and identify a novel task: adversarial co-saliency attack. Specially, given an image selected from a group of images containing some common and salient objects, we aim to generate an adversarial version that can mislead CoSOD methods to predict incorrect co-salient regions. Note that, compared with general white-box adversarial attacks for classification, this new task faces two additional challenges: (1) low success rate due to the diverse appearance of images in the group; (2) low transferability across CoSOD methods due to the considerable difference between CoSOD pipelines. To address these challenges, we propose the very first blackbox joint adversarial exposure and noise attack (Jadena), where we jointly and locally tune the exposure and additive perturbations of the image according to a newly designed high-feature-level contrast-sensitive loss function. Our method, without any information on the state-of-the-art CoSOD methods, leads to significant performance degradation on various co-saliency detection datasets and makes the co-salient objects undetectable. This can have strong practical benefits in properly securing the large number of personal photos currently shared on the Internet. Moreover, our method is potential to be utilized as a metric for evaluating the robustness of CoSOD methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
羊羊酱发布了新的文献求助10
1秒前
halo1004发布了新的文献求助10
1秒前
litieniu完成签到 ,获得积分10
2秒前
宁雨蕾发布了新的文献求助10
3秒前
向心发布了新的文献求助30
3秒前
李健应助幼儿园老大采纳,获得10
3秒前
Moo5_zzZ发布了新的文献求助10
4秒前
华仔应助小乔采纳,获得10
4秒前
6秒前
FashionBoy应助Li采纳,获得10
7秒前
syalonyui发布了新的文献求助10
7秒前
9秒前
迷路芒果完成签到,获得积分10
11秒前
sue发布了新的文献求助10
11秒前
朴素难敌完成签到,获得积分10
12秒前
Fosuer_3完成签到,获得积分10
13秒前
聪明夏波发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
积极彩虹完成签到,获得积分10
14秒前
17秒前
脑洞疼应助宁雨蕾采纳,获得10
17秒前
Fosuer_3发布了新的文献求助10
19秒前
怪怪完成签到 ,获得积分10
19秒前
lld发布了新的文献求助10
20秒前
20秒前
HightLight发布了新的文献求助10
21秒前
羞涩的傲菡完成签到,获得积分10
23秒前
24秒前
肥牛发布了新的文献求助10
25秒前
福娃哇完成签到 ,获得积分10
26秒前
HightLight完成签到,获得积分10
28秒前
搜集达人应助聪明夏波采纳,获得10
30秒前
31秒前
32秒前
Tanya47应助科研通管家采纳,获得10
35秒前
英姑应助科研通管家采纳,获得10
35秒前
bkagyin应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855706
关于积分的说明 15106735
捐赠科研通 4822347
什么是DOI,文献DOI怎么找? 2581405
邀请新用户注册赠送积分活动 1535549
关于科研通互助平台的介绍 1493834