Identification and prediction of Parkinson’s disease subtypes and progression using machine learning in two cohorts

疾病 帕金森病 队列 医学 生物标志物 内科学 肿瘤科 临床试验 机器学习 生物信息学 生物 计算机科学 生物化学
作者
Anant Dadu,Vipul Satone,Rachneet Kaur,Sayed Hadi Hashemi,Hampton L. Leonard,Hirotaka Iwaki,Mary B. Makarious,Kimberley Billingsley,Sara Bandrés‐Ciga,Lana Sargent,Alastair J. Noyce,Ali Daneshmand,Cornelis Blauwendraat,Kenneth Marek,Sonja W. Scholz,Andrew Singleton,Mike A. Nalls,Roy H. Campbell,Faraz Faghri
出处
期刊:npj Parkinson's disease 卷期号:8 (1) 被引量:39
标识
DOI:10.1038/s41531-022-00439-z
摘要

The clinical manifestations of Parkinson's disease (PD) are characterized by heterogeneity in age at onset, disease duration, rate of progression, and the constellation of motor versus non-motor features. There is an unmet need for the characterization of distinct disease subtypes as well as improved, individualized predictions of the disease course. We used unsupervised and supervised machine learning methods on comprehensive, longitudinal clinical data from the Parkinson's Disease Progression Marker Initiative (n = 294 cases) to identify patient subtypes and to predict disease progression. The resulting models were validated in an independent, clinically well-characterized cohort from the Parkinson's Disease Biomarker Program (n = 263 cases). Our analysis distinguished three distinct disease subtypes with highly predictable progression rates, corresponding to slow, moderate, and fast disease progression. We achieved highly accurate projections of disease progression 5 years after initial diagnosis with an average area under the curve (AUC) of 0.92 (95% CI: 0.95 ± 0.01) for the slower progressing group (PDvec1), 0.87 ± 0.03 for moderate progressors, and 0.95 ± 0.02 for the fast-progressing group (PDvec3). We identified serum neurofilament light as a significant indicator of fast disease progression among other key biomarkers of interest. We replicated these findings in an independent cohort, released the analytical code, and developed models in an open science manner. Our data-driven study provides insights to deconstruct PD heterogeneity. This approach could have immediate implications for clinical trials by improving the detection of significant clinical outcomes. We anticipate that machine learning models will improve patient counseling, clinical trial design, and ultimately individualized patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
笃定完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
6秒前
文艺的筮完成签到 ,获得积分10
7秒前
chenchenchen发布了新的文献求助10
8秒前
CipherSage应助Zoeyz采纳,获得10
8秒前
奔奔发布了新的文献求助10
8秒前
cocolu应助传统的鹏涛采纳,获得10
10秒前
13秒前
小葵发布了新的文献求助10
13秒前
15秒前
上官若男应助Li采纳,获得10
17秒前
chenchenchen发布了新的文献求助10
17秒前
在水一方应助Soso采纳,获得10
17秒前
科目三应助liuyan采纳,获得10
19秒前
20秒前
李健应助乐观的中心采纳,获得10
20秒前
sakana完成签到,获得积分20
20秒前
shinnosuke完成签到,获得积分10
21秒前
21秒前
慕青应助Voloid采纳,获得10
23秒前
wade2016发布了新的文献求助10
25秒前
wanci应助大脑洞少年采纳,获得10
26秒前
jiaoshaa完成签到,获得积分10
28秒前
29秒前
CXS完成签到,获得积分10
30秒前
榕树下完成签到,获得积分10
31秒前
桃大屁发布了新的文献求助10
31秒前
珈小羽完成签到,获得积分10
34秒前
34秒前
34秒前
jiaoshaa发布了新的文献求助10
36秒前
36秒前
37秒前
小葵完成签到,获得积分10
37秒前
科研通AI2S应助小倩倩加油采纳,获得10
38秒前
Leif应助兔兔sci采纳,获得10
39秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613