亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of phosphorus concentrations in shallow groundwater in intensive agricultural regions based on machine learning

地下水 农业 环境科学 水资源管理 环境工程 水文学(农业) 地质学 化学 地理 岩土工程 考古 有机化学
作者
Heng Yang,Panlei Wang,Anqiang Chen,Yuan-Hang Ye,Qingfei Chen,Rongyang Cui,Dan Zhang
出处
期刊:Chemosphere [Elsevier BV]
卷期号:313: 137623-137623 被引量:23
标识
DOI:10.1016/j.chemosphere.2022.137623
摘要

Excessive accumulation of phosphorus in soil profiles has become the main source of phosphorus in groundwater due to the application of phosphorus fertilizers in intensive agricultural regions (IARs). Elevated phosphorus concentrations in groundwater have become a global phenomenon, which places enormous pressure on the safe use of water resources and the safety of the aquatic environment. Currently, the prediction of pollutant concentrations in groundwater mainly focuses on nitrate nitrogen, while research on phosphorus prediction is limited. Taking the IARs approximately 8 plateau lakes in the Yunnan-Guizhou Plateau as an example, 570 shallow groundwater samples and 28 predictor variables were collected and measured, and a machine learning approach was used to predict phosphorus concentrations in groundwater. The performance of three machine learning algorithms and different sets of variables for predicting phosphorus concentrations in shallow groundwater was evaluated. The results showed that after all variables were introduced into the model, the R2, RMSE and MAE of support vector machine (SVM), random forest (RF) and neural network (NN) were 0.52–0.60, 0.101–0.108 and 0.074–0.081, respectively. Among them, the SVM model had the best prediction effect. The clay content and water-soluble phosphorus in soil and soluble organic carbon in groundwater had a high contribution to the prediction accuracy of the model. The prediction accuracy of the model with reduced number of variables showed that when the number of variables was equal to 6, the RF model had R2, RMSE and MAE values of 0.53, 0.108 and 0.074, respectively, and the number of variables increased again; there were small changes in R2, RMSE and MAE. Compared with the SVM and NN models, the RF model can achieve higher accuracy by inputting fewer variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张清璇发布了新的文献求助10
刚刚
zyx完成签到,获得积分10
3秒前
郭大侠完成签到,获得积分20
8秒前
11秒前
科研通AI5应助张清璇采纳,获得10
11秒前
木木完成签到 ,获得积分10
14秒前
务实的犀牛完成签到,获得积分10
22秒前
23秒前
ding应助清秀的夜雪采纳,获得10
24秒前
28秒前
cherlie应助科研通管家采纳,获得10
31秒前
jade完成签到 ,获得积分10
31秒前
SciGPT应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
yyds应助科研通管家采纳,获得50
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
高源伯完成签到 ,获得积分10
33秒前
Cpp完成签到 ,获得积分10
33秒前
Akim应助星空采纳,获得10
34秒前
FashionBoy应助cjh采纳,获得10
36秒前
wanci应助yuanquaner采纳,获得10
40秒前
SciGPT应助yuanquaner采纳,获得10
40秒前
hiaoyi完成签到 ,获得积分0
43秒前
尽平梅愿完成签到 ,获得积分10
45秒前
大个应助gge采纳,获得10
47秒前
wuakeup完成签到,获得积分10
48秒前
丿淘丶Tao丨完成签到,获得积分10
50秒前
英俊的铭应助花花521采纳,获得10
50秒前
qiu完成签到,获得积分10
58秒前
58秒前
WuFen完成签到 ,获得积分10
59秒前
1分钟前
cjh发布了新的文献求助10
1分钟前
花花521发布了新的文献求助10
1分钟前
1分钟前
拾壹完成签到,获得积分10
1分钟前
乐乐应助wuakeup采纳,获得10
1分钟前
晓书完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953370
求助须知:如何正确求助?哪些是违规求助? 3498877
关于积分的说明 11093209
捐赠科研通 3229405
什么是DOI,文献DOI怎么找? 1785359
邀请新用户注册赠送积分活动 869397
科研通“疑难数据库(出版商)”最低求助积分说明 801442