Game Theory Based Dynamic Event-Driven Service Scheduling in Cloud Manufacturing

云制造 调度(生产过程) 计算机科学 分布式计算 云计算 能源消耗 动态优先级调度 作业车间调度 离散事件仿真 运筹学 服务质量 工业工程 工程类 模拟 运营管理 计算机网络 电气工程 布线(电子设计自动化) 操作系统
作者
Sicheng Liu,Lingyan Li,Zhang Li,Weiming Shen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 618-629 被引量:2
标识
DOI:10.1109/tase.2022.3226444
摘要

Due to the individualized consumer needs, cloud manufacturing (CMfg) has been widely used in the optimization of available manufacturing resource allocation to enhance resource utilization and reduce energy consumption. However, efficient scheduling of tasks and subtasks under dynamic CMfg environments to these re- sources are challenging problems. This paper proposes a game theory based on task scheduling and model selection for effectively exploiting distributed manufacturing resources in CMfg, and the Nash equilibrium (NE) in this game theory is implemented by a double ant colony optimization (DACO) algorithm. Through this model, services provided by different providers can handle a batch of tasks in real-time. Besides, to satisfy different service providers and demanders, the proposed approach considers multiple task attributes simultaneously, including completion time, cost, service quality, service composition capability, service availability, energy consumption, service sustainability, service maintainability, and service trust. Simulation results demonstrate that the proposed method is not only effective for the relevant optimization objective but also can achieve great performance under real-time CMfg environments. Note to Practitioners—To provide the best production guides, the efficiency of configuration optimization of manufacturing resources is critical to the control and management of smart manufacturing systems. This paper investigates the dynamic scheduling problem for manufacturing services in CMfg. Previous task scheduling approaches fail to evaluate multiple factors together, like completion time, cost, and energy consumption. Also, the traditional scheduling method cannot respond to requests caused by service state changes in an efficient way. Therefore, in this paper, a game theory model that consists of a static scheduling sub-game and a dynamic selection sub-game is presented. This model is achieved by adopting a proposed double ant colony optimization algorithm that solves constrained non-linear programming. Simulation experiments shown in this paper prove that the proposed method outperforms existing scheduling methods in multiple aspects, including completion time and energy consumption. Also, this method can be readily implemented and incorporated into real production environments. Future work can improve the proposed method by analyzing the uncertainty during scheduling tasks and sharing the logistics resources on the same routes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
advance完成签到,获得积分10
刚刚
1秒前
zhangxian0426完成签到,获得积分10
3秒前
3秒前
冰水混合物完成签到,获得积分10
3秒前
4秒前
Rachael发布了新的文献求助10
5秒前
好久不见发布了新的文献求助10
5秒前
科研通AI2S应助冰水混合物采纳,获得10
7秒前
7秒前
Panjiao完成签到 ,获得积分10
7秒前
8秒前
zhiger完成签到,获得积分10
9秒前
M777完成签到,获得积分10
10秒前
特斯小子发布了新的文献求助30
10秒前
孤独梦曼发布了新的文献求助10
10秒前
天天快乐应助小台采纳,获得10
12秒前
许不让完成签到,获得积分10
15秒前
16秒前
失眠的怀柔完成签到 ,获得积分10
16秒前
peterlu完成签到,获得积分20
19秒前
姜汁发布了新的文献求助10
19秒前
科研通AI2S应助haizz采纳,获得10
22秒前
bkagyin应助岑岑岑采纳,获得10
23秒前
昏睡的语山完成签到 ,获得积分20
24秒前
李富贵儿发布了新的文献求助10
24秒前
不要引力完成签到 ,获得积分10
24秒前
852应助阿迪采纳,获得10
25秒前
英俊的铭应助美好斓采纳,获得10
25秒前
今后应助阿迪采纳,获得10
25秒前
香蕉觅云应助阿迪采纳,获得10
25秒前
小蘑菇应助阿迪采纳,获得10
26秒前
科目三应助阿迪采纳,获得10
26秒前
完美世界应助阿迪采纳,获得10
26秒前
思源应助阿迪采纳,获得10
26秒前
26秒前
不配.应助小木子采纳,获得10
26秒前
27秒前
栗悟饭与龟波功完成签到,获得积分10
28秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124564
求助须知:如何正确求助?哪些是违规求助? 2774883
关于积分的说明 7724421
捐赠科研通 2430307
什么是DOI,文献DOI怎么找? 1291057
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297