Game Theory Based Dynamic Event-Driven Service Scheduling in Cloud Manufacturing

云制造 调度(生产过程) 计算机科学 分布式计算 云计算 能源消耗 动态优先级调度 作业车间调度 离散事件仿真 运筹学 服务质量 工业工程 工程类 模拟 运营管理 计算机网络 布线(电子设计自动化) 操作系统 电气工程
作者
Sicheng Liu,Lingyan Li,Zhang Li,Weiming Shen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 618-629 被引量:2
标识
DOI:10.1109/tase.2022.3226444
摘要

Due to the individualized consumer needs, cloud manufacturing (CMfg) has been widely used in the optimization of available manufacturing resource allocation to enhance resource utilization and reduce energy consumption. However, efficient scheduling of tasks and subtasks under dynamic CMfg environments to these re- sources are challenging problems. This paper proposes a game theory based on task scheduling and model selection for effectively exploiting distributed manufacturing resources in CMfg, and the Nash equilibrium (NE) in this game theory is implemented by a double ant colony optimization (DACO) algorithm. Through this model, services provided by different providers can handle a batch of tasks in real-time. Besides, to satisfy different service providers and demanders, the proposed approach considers multiple task attributes simultaneously, including completion time, cost, service quality, service composition capability, service availability, energy consumption, service sustainability, service maintainability, and service trust. Simulation results demonstrate that the proposed method is not only effective for the relevant optimization objective but also can achieve great performance under real-time CMfg environments. Note to Practitioners—To provide the best production guides, the efficiency of configuration optimization of manufacturing resources is critical to the control and management of smart manufacturing systems. This paper investigates the dynamic scheduling problem for manufacturing services in CMfg. Previous task scheduling approaches fail to evaluate multiple factors together, like completion time, cost, and energy consumption. Also, the traditional scheduling method cannot respond to requests caused by service state changes in an efficient way. Therefore, in this paper, a game theory model that consists of a static scheduling sub-game and a dynamic selection sub-game is presented. This model is achieved by adopting a proposed double ant colony optimization algorithm that solves constrained non-linear programming. Simulation experiments shown in this paper prove that the proposed method outperforms existing scheduling methods in multiple aspects, including completion time and energy consumption. Also, this method can be readily implemented and incorporated into real production environments. Future work can improve the proposed method by analyzing the uncertainty during scheduling tasks and sharing the logistics resources on the same routes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wlh完成签到 ,获得积分10
1秒前
Frank完成签到,获得积分10
1秒前
1秒前
2秒前
傲娇的凡发布了新的文献求助10
2秒前
zgdzhj完成签到,获得积分10
3秒前
3秒前
3秒前
Waris发布了新的文献求助10
4秒前
浮游应助晴子采纳,获得10
5秒前
浮游应助长度2到采纳,获得10
6秒前
小宇发布了新的文献求助10
6秒前
QIQI发布了新的文献求助10
7秒前
梦思遗落完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
zyx完成签到,获得积分10
8秒前
简7发布了新的文献求助30
8秒前
佐zzz发布了新的文献求助10
9秒前
lxl发布了新的文献求助10
10秒前
10秒前
上官若男应助ZY采纳,获得10
10秒前
11秒前
12秒前
热情的远锋完成签到 ,获得积分10
13秒前
13秒前
浮游应助晴子采纳,获得10
14秒前
量子星尘发布了新的文献求助10
16秒前
兰兰不懒发布了新的文献求助10
17秒前
Hello应助佐zzz采纳,获得10
17秒前
18秒前
老实的斌完成签到 ,获得积分10
19秒前
2425完成签到,获得积分10
20秒前
田様应助专一的戒指采纳,获得10
21秒前
fengwanru发布了新的文献求助10
21秒前
维尼熊完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
铅笔刀完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700