Game Theory Based Dynamic Event-Driven Service Scheduling in Cloud Manufacturing

云制造 调度(生产过程) 计算机科学 分布式计算 云计算 能源消耗 动态优先级调度 作业车间调度 离散事件仿真 运筹学 服务质量 工业工程 工程类 模拟 运营管理 计算机网络 布线(电子设计自动化) 操作系统 电气工程
作者
Sicheng Liu,Lingyan Li,Zhang Li,Weiming Shen
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 618-629 被引量:2
标识
DOI:10.1109/tase.2022.3226444
摘要

Due to the individualized consumer needs, cloud manufacturing (CMfg) has been widely used in the optimization of available manufacturing resource allocation to enhance resource utilization and reduce energy consumption. However, efficient scheduling of tasks and subtasks under dynamic CMfg environments to these re- sources are challenging problems. This paper proposes a game theory based on task scheduling and model selection for effectively exploiting distributed manufacturing resources in CMfg, and the Nash equilibrium (NE) in this game theory is implemented by a double ant colony optimization (DACO) algorithm. Through this model, services provided by different providers can handle a batch of tasks in real-time. Besides, to satisfy different service providers and demanders, the proposed approach considers multiple task attributes simultaneously, including completion time, cost, service quality, service composition capability, service availability, energy consumption, service sustainability, service maintainability, and service trust. Simulation results demonstrate that the proposed method is not only effective for the relevant optimization objective but also can achieve great performance under real-time CMfg environments. Note to Practitioners—To provide the best production guides, the efficiency of configuration optimization of manufacturing resources is critical to the control and management of smart manufacturing systems. This paper investigates the dynamic scheduling problem for manufacturing services in CMfg. Previous task scheduling approaches fail to evaluate multiple factors together, like completion time, cost, and energy consumption. Also, the traditional scheduling method cannot respond to requests caused by service state changes in an efficient way. Therefore, in this paper, a game theory model that consists of a static scheduling sub-game and a dynamic selection sub-game is presented. This model is achieved by adopting a proposed double ant colony optimization algorithm that solves constrained non-linear programming. Simulation experiments shown in this paper prove that the proposed method outperforms existing scheduling methods in multiple aspects, including completion time and energy consumption. Also, this method can be readily implemented and incorporated into real production environments. Future work can improve the proposed method by analyzing the uncertainty during scheduling tasks and sharing the logistics resources on the same routes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
勤劳的斑马完成签到,获得积分10
2秒前
2秒前
完美世界应助Windycityguy采纳,获得10
2秒前
深情安青应助starlx0813采纳,获得10
3秒前
3秒前
义气丹雪应助细腻听白采纳,获得100
3秒前
Re发布了新的文献求助10
3秒前
科研通AI6.1应助热情千风采纳,获得10
4秒前
雨柏完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
8秒前
orixero应助年轻就要气盛采纳,获得10
9秒前
violet完成签到,获得积分20
10秒前
充电宝应助健忘的雨安采纳,获得10
12秒前
dfggg发布了新的文献求助10
12秒前
饱满的问丝完成签到,获得积分10
13秒前
14秒前
大水完成签到 ,获得积分10
15秒前
15秒前
Akira完成签到,获得积分20
16秒前
隐形曼青应助是ok耶采纳,获得10
17秒前
18秒前
18秒前
11111发布了新的文献求助20
19秒前
大水发布了新的文献求助10
21秒前
21秒前
小蘑菇应助保持科研热情采纳,获得10
21秒前
所所应助蓦然采纳,获得10
22秒前
22秒前
爱科研的小蜗啊完成签到,获得积分10
23秒前
从容梦山发布了新的文献求助10
23秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848