Contrastive Learning of Handwritten Signature Representations for Writer-Independent Verification

签名(拓扑) 计算机科学 特征向量 班级(哲学) 任务(项目管理) 人工智能 模式识别(心理学) 转化(遗传学) 特征(语言学) 自然语言处理 空格(标点符号) 向量空间 数学 生物化学 化学 语言学 几何学 管理 哲学 经济 基因 操作系统
作者
Talles Brito,Victor L. F. Souza,Adriano L. I. Oliveira,Rafael M. O. Cruz,Robert Sabourin
标识
DOI:10.1109/ijcnn55064.2022.9892428
摘要

In writer-independent verification systems, a single model is trained for all users of the system using dissimilarity vectors obtained through a dichotomy transformation that converts a multi-class problem into a 2-class problem comprising: (i) the intra-class dissimilarity vectors computed from samples of the same user, (ii) the inter-class dissimilarity vectors computed from samples of different users. When mapping handwritten signature representations, it is desired to obtain well-separated dense clusters of signature representations for each user, in such a way that transformed intra-class dissimilarity vectors tend to be separated from the inter-class dissimilarity vectors. Moreover, since skilled forgeries resemble reference signatures, it is also desired to obtain skilled forgery dissimilarity vectors that are further away from the region of the intra-class dissimilarity vectors. In this work, it is hypothesized that an improved dissimilarity space can be achieved through a multi-task framework for learning handwritten signature feature representations based on deep contrastive learning. The proposed framework is composed of two objective-specific tasks; it does not use skilled forgeries for training. The first task aims to map signature examples of a given user in a dense cluster, while linearly separating the signature representations of different users. The second task aims to adjust forgery representations by adopting a contrastive loss with the ability to perform hard negative mining. Hard negatives are similar examples but from different classes that can be seen as artificially generated skilled forgeries for training. In a writer-independent verification approach, the model obtained with the proposed framework is evaluated in terms of the equal error rate on GPDS-300, CEDAR and MCYT-75 datasets. Experiments demonstrated a statistically significant improvement in signature verification compared to the state-of-the-art SigNet feature extraction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Lw4Ngn发布了新的文献求助10
1秒前
Halland完成签到,获得积分10
1秒前
狼牧羊城完成签到,获得积分10
1秒前
桐桐啊完成签到,获得积分10
2秒前
2秒前
Talk发布了新的文献求助10
3秒前
3秒前
4秒前
慕青应助忆diann采纳,获得10
4秒前
4秒前
峰_发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
Hinao发布了新的文献求助10
6秒前
7秒前
自觉涵双发布了新的文献求助10
7秒前
Orange应助喜悦香萱采纳,获得10
7秒前
77发布了新的文献求助10
7秒前
豆子发布了新的文献求助10
8秒前
藿藿发布了新的文献求助10
8秒前
8秒前
君君发布了新的文献求助30
9秒前
今后应助研友_Lw4Ngn采纳,获得10
9秒前
慕青应助yeah采纳,获得10
9秒前
兆渊发布了新的文献求助10
10秒前
lac发布了新的文献求助10
10秒前
阳光问安发布了新的文献求助10
11秒前
wanghui发布了新的文献求助10
12秒前
CodeCraft应助顺心的定帮采纳,获得10
12秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
科研通AI5应助heli采纳,获得10
15秒前
15秒前
wanci应助君君采纳,获得30
15秒前
15秒前
暴躁的夏烟应助比白618采纳,获得10
16秒前
andrele应助泽成采纳,获得10
17秒前
科研通AI5应助泽成采纳,获得30
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660135
求助须知:如何正确求助?哪些是违规求助? 3221444
关于积分的说明 9740763
捐赠科研通 2930886
什么是DOI,文献DOI怎么找? 1604684
邀请新用户注册赠送积分活动 757433
科研通“疑难数据库(出版商)”最低求助积分说明 734426