Poisoning the Well: Adversarial Poisoning on ML-based Software-defined Network Intrusion Detection Systems

支持向量机 计算机科学 入侵检测系统 分类器(UML) 软件 管道(软件) 入侵 对抗制 人工智能 软件定义的网络 机器学习 模式识别(心理学) 计算机安全 数据挖掘 计算机网络 操作系统 地球化学 地质学
作者
Tapadhir Das,Raj Shukla,Shamik Sengupta
标识
DOI:10.36227/techrxiv.21664031.v1
摘要

<p>With the usage of machine learning (ML) algorithms in modern-day network intrusion detection systems (NIDS), contemporary network communications are efficiently protected from cyber threats. However, these ML algorithms are starting to be compromised by adversarial attacks that ambush the ML pipeline. In this paper, we demonstrate the feasibility of an adversarial attack called the Cosine Similarity Label Manipulation (CSLM), which is geared toward compromising training labels for ML-based NIDS, and how they can affect ML pipelines. We demonstrate the efficacy of the attacks towards both single and multi-controller software-defined network (SDN) setups. Results indicate that the proposed attacks provide substantial deterioration of classifier performance in single SDNs, specifically, those that utilize RF, which deteriorates ~50% under Min-CSLM attacks, and SVMs, which undergo ~60% deterioration from a Max-CSLM attack. We also note that RF, SVM, and MLP classifiers are also extensively vulnerable to these attacks in MSDNs as they incur the most observed utility deterioration. MLP-based uniform multi-controller setups (MSDN) incur the most deterioration under both proposed CSLM attacks with ~28% decrease in performance, while SVM and RF-based variable MSDNs incur the most deterioration under both CSLM attacks with ~30% and ~35% decrease in performance, respectively.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
qing完成签到,获得积分10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得200
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI5应助辣味锅包肉采纳,获得10
1秒前
叶凡完成签到,获得积分20
2秒前
GQ完成签到,获得积分10
2秒前
一笑奈何完成签到,获得积分10
3秒前
Jayson发布了新的文献求助10
3秒前
科研通AI5应助辣味锅包肉采纳,获得10
5秒前
sober完成签到,获得积分10
6秒前
热心雨南完成签到 ,获得积分10
7秒前
明天完成签到,获得积分10
7秒前
公瑾完成签到,获得积分10
8秒前
科研通AI5应助辣味锅包肉采纳,获得10
8秒前
10秒前
11秒前
半柚应助辣味锅包肉采纳,获得10
11秒前
科研通AI5应助喜悦青筠采纳,获得10
11秒前
KAP应助MMM采纳,获得10
11秒前
wanci应助合适的小馒头采纳,获得10
12秒前
陈秋发布了新的文献求助10
14秒前
15秒前
斑马发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
拉长的大侠完成签到 ,获得积分10
21秒前
foxp3发布了新的文献求助10
22秒前
喜悦青筠完成签到,获得积分10
22秒前
23秒前
江觅松发布了新的文献求助10
23秒前
清研完成签到,获得积分10
24秒前
高分求助中
All the Birds of the World 3000
Machine Learning Methods in Geoscience 1000
General Equilibrium, Capital and Macroeconomics 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724908
求助须知:如何正确求助?哪些是违规求助? 3270180
关于积分的说明 9964372
捐赠科研通 2984947
什么是DOI,文献DOI怎么找? 1637677
邀请新用户注册赠送积分活动 777715
科研通“疑难数据库(出版商)”最低求助积分说明 747128