Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches

体素 动态功能连接 静息状态功能磁共振成像 默认模式网络 功能连接 计算机科学 人工智能 大脑定位 模式识别(心理学) 卡尔曼滤波器 大脑活动与冥想 神经科学 功能磁共振成像 心理学 脑电图
作者
Jin-Gu Kang,Liang Wang,Chao‐Gan Yan,Jinhui Wang,Xia Liang,Yong He
出处
期刊:NeuroImage [Elsevier]
卷期号:56 (3): 1222-1234 被引量:114
标识
DOI:10.1016/j.neuroimage.2011.03.033
摘要

The cognitive activity of the human brain benefits from the functional connectivity of multiple brain regions that form specific, functional brain networks. Recent studies have indicated that the relationship between brain regions can be investigated by examining the temporal interaction (known as functional connectivity) of spontaneous blood oxygen level-dependent (BOLD) signals derived from resting-state functional MRI. Most of these studies plausibly assumed that inter-regional interactions were temporally stationary. However, little is known about the dynamic characteristics of resting-state functional connectivity (RSFC). In this study, we thoroughly examined this question within and between multiple functional brain networks. Twenty-two healthy subjects were scanned in a resting state. Several of the RSFC networks observed, including the default-mode, motor, attention, memory, auditory, visual, language and subcortical networks, were first identified using a conventional voxel-wise correlation analysis with predefined region of interests (ROIs). Then, a variable parameter regression model combined with the Kalman filtering method was employed to detect the dynamic interactions between each ROI and all other brain voxels within each of the RSFC maps extracted above. Experimental results revealed that the functional interactions within each RSFC map showed time-varying properties, and that approximately 10–20% of the voxels within each RSFC map showed significant functional connectivity to each ROI during the scanning session. This dynamic pattern was also observed for the interactions between different functional networks. In addition, the spatial pattern of dynamic connectivity maps obtained from neighboring time points had a high similarity. Overall, this study provides insights into the dynamic properties of resting-state functional networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助大力的无声采纳,获得10
刚刚
CipherSage应助大力的无声采纳,获得10
刚刚
z7777777完成签到,获得积分10
刚刚
了0完成签到 ,获得积分10
刚刚
寒冷的复天完成签到,获得积分10
1秒前
2秒前
风筝鱼完成签到 ,获得积分10
2秒前
满意冷荷发布了新的文献求助10
3秒前
3秒前
cjjwei完成签到 ,获得积分10
3秒前
CipherSage应助Fanny采纳,获得20
4秒前
科研通AI2S应助小白果果采纳,获得10
4秒前
5秒前
shyの煜完成签到 ,获得积分10
5秒前
7秒前
刘佳佳完成签到 ,获得积分10
8秒前
兴奋觅海完成签到,获得积分10
9秒前
9秒前
cytheria完成签到 ,获得积分10
10秒前
诸笑白发布了新的文献求助10
11秒前
一生所爱完成签到,获得积分10
11秒前
Z1070741749完成签到,获得积分10
11秒前
sad发布了新的文献求助10
12秒前
13秒前
Z1070741749发布了新的文献求助10
14秒前
xiangxiang发布了新的文献求助10
15秒前
19秒前
了0完成签到 ,获得积分10
24秒前
脑洞疼应助圣晟胜采纳,获得10
26秒前
霓娜酱发布了新的文献求助10
26秒前
28秒前
852应助xiaoxiao采纳,获得10
30秒前
lingjuanwu完成签到,获得积分10
30秒前
janice发布了新的文献求助10
31秒前
31秒前
快乐慕灵完成签到,获得积分10
33秒前
33秒前
JianYugen完成签到,获得积分10
33秒前
happy发布了新的文献求助10
34秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851