Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches

体素 动态功能连接 静息状态功能磁共振成像 默认模式网络 功能连接 计算机科学 人工智能 大脑定位 模式识别(心理学) 卡尔曼滤波器 大脑活动与冥想 神经科学 功能磁共振成像 心理学 脑电图
作者
Jin-Gu Kang,Liang Wang,Chao‐Gan Yan,Jinhui Wang,Xia Liang,Yong He
出处
期刊:NeuroImage [Elsevier BV]
卷期号:56 (3): 1222-1234 被引量:114
标识
DOI:10.1016/j.neuroimage.2011.03.033
摘要

The cognitive activity of the human brain benefits from the functional connectivity of multiple brain regions that form specific, functional brain networks. Recent studies have indicated that the relationship between brain regions can be investigated by examining the temporal interaction (known as functional connectivity) of spontaneous blood oxygen level-dependent (BOLD) signals derived from resting-state functional MRI. Most of these studies plausibly assumed that inter-regional interactions were temporally stationary. However, little is known about the dynamic characteristics of resting-state functional connectivity (RSFC). In this study, we thoroughly examined this question within and between multiple functional brain networks. Twenty-two healthy subjects were scanned in a resting state. Several of the RSFC networks observed, including the default-mode, motor, attention, memory, auditory, visual, language and subcortical networks, were first identified using a conventional voxel-wise correlation analysis with predefined region of interests (ROIs). Then, a variable parameter regression model combined with the Kalman filtering method was employed to detect the dynamic interactions between each ROI and all other brain voxels within each of the RSFC maps extracted above. Experimental results revealed that the functional interactions within each RSFC map showed time-varying properties, and that approximately 10–20% of the voxels within each RSFC map showed significant functional connectivity to each ROI during the scanning session. This dynamic pattern was also observed for the interactions between different functional networks. In addition, the spatial pattern of dynamic connectivity maps obtained from neighboring time points had a high similarity. Overall, this study provides insights into the dynamic properties of resting-state functional networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cordero完成签到,获得积分10
2秒前
spiritpope发布了新的文献求助30
2秒前
汤睿文发布了新的文献求助10
3秒前
胡一一完成签到,获得积分10
3秒前
4秒前
浮游应助吴彦祖采纳,获得10
6秒前
7秒前
大个应助樱岛麻衣采纳,获得10
7秒前
7秒前
科目三应助liubo采纳,获得10
7秒前
淡然的菲鹰完成签到 ,获得积分10
7秒前
liuteng发布了新的文献求助10
8秒前
英吉利25发布了新的文献求助10
8秒前
8秒前
崔尔蓉完成签到,获得积分10
9秒前
aa发布了新的文献求助10
11秒前
12秒前
西梅发布了新的文献求助10
13秒前
15秒前
暖冬22发布了新的文献求助10
15秒前
景穆完成签到,获得积分10
16秒前
16秒前
仁仁仁完成签到,获得积分10
17秒前
17秒前
18秒前
coco完成签到,获得积分20
18秒前
完美世界应助lulu采纳,获得10
19秒前
xz完成签到,获得积分10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得20
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
20秒前
Orange应助科研通管家采纳,获得10
20秒前
Livrik发布了新的文献求助10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227238
求助须知:如何正确求助?哪些是违规求助? 4398359
关于积分的说明 13689318
捐赠科研通 4263055
什么是DOI,文献DOI怎么找? 2339509
邀请新用户注册赠送积分活动 1336803
关于科研通互助平台的介绍 1292920