Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches

体素 动态功能连接 静息状态功能磁共振成像 默认模式网络 功能连接 计算机科学 人工智能 大脑定位 模式识别(心理学) 卡尔曼滤波器 大脑活动与冥想 神经科学 功能磁共振成像 心理学 脑电图
作者
Jin-Gu Kang,Liang Wang,Chao‐Gan Yan,Jinhui Wang,Xia Liang,Yong He
出处
期刊:NeuroImage [Elsevier]
卷期号:56 (3): 1222-1234 被引量:114
标识
DOI:10.1016/j.neuroimage.2011.03.033
摘要

The cognitive activity of the human brain benefits from the functional connectivity of multiple brain regions that form specific, functional brain networks. Recent studies have indicated that the relationship between brain regions can be investigated by examining the temporal interaction (known as functional connectivity) of spontaneous blood oxygen level-dependent (BOLD) signals derived from resting-state functional MRI. Most of these studies plausibly assumed that inter-regional interactions were temporally stationary. However, little is known about the dynamic characteristics of resting-state functional connectivity (RSFC). In this study, we thoroughly examined this question within and between multiple functional brain networks. Twenty-two healthy subjects were scanned in a resting state. Several of the RSFC networks observed, including the default-mode, motor, attention, memory, auditory, visual, language and subcortical networks, were first identified using a conventional voxel-wise correlation analysis with predefined region of interests (ROIs). Then, a variable parameter regression model combined with the Kalman filtering method was employed to detect the dynamic interactions between each ROI and all other brain voxels within each of the RSFC maps extracted above. Experimental results revealed that the functional interactions within each RSFC map showed time-varying properties, and that approximately 10–20% of the voxels within each RSFC map showed significant functional connectivity to each ROI during the scanning session. This dynamic pattern was also observed for the interactions between different functional networks. In addition, the spatial pattern of dynamic connectivity maps obtained from neighboring time points had a high similarity. Overall, this study provides insights into the dynamic properties of resting-state functional networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fosca完成签到,获得积分10
1秒前
1秒前
wanci应助心心采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
武雨寒发布了新的文献求助10
4秒前
6秒前
Orange应助Divya采纳,获得10
6秒前
小布丁发布了新的文献求助10
6秒前
7秒前
一二发布了新的文献求助10
7秒前
美好乐松应助罗是一采纳,获得10
9秒前
yuzu完成签到,获得积分10
10秒前
meta完成签到,获得积分10
11秒前
秃顶双马尾完成签到,获得积分10
11秒前
zhoujiahui发布了新的文献求助10
11秒前
Bian完成签到,获得积分10
13秒前
羊白玉完成签到 ,获得积分10
15秒前
果果完成签到,获得积分10
15秒前
ephore应助DianaRang采纳,获得30
18秒前
彭于晏应助一二采纳,获得10
19秒前
20秒前
20秒前
彭于晏应助哈哈哈哈采纳,获得10
23秒前
23秒前
Divya发布了新的文献求助10
25秒前
开心瓜瓜瓜完成签到,获得积分10
25秒前
汉堡包应助城南花已开采纳,获得10
27秒前
xingxing完成签到,获得积分10
29秒前
BruceQ完成签到 ,获得积分10
29秒前
michaelvin完成签到,获得积分10
29秒前
深海渔发布了新的文献求助10
30秒前
完美世界应助小李采纳,获得10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134988
求助须知:如何正确求助?哪些是违规求助? 2785963
关于积分的说明 7774538
捐赠科研通 2441779
什么是DOI,文献DOI怎么找? 1298177
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825