Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination

电动势 电池(电) 荷电状态 电压 反电动势 锂离子电池 电气工程 等效电路 恒流 电动汽车 控制理论(社会学) 开路电压 内阻 汽车工程 工程类 计算机科学 功率(物理) 物理 热力学 控制(管理) 人工智能
作者
Wladislaw Waag,Dirk Uwe Sauer
出处
期刊:Applied Energy [Elsevier]
卷期号:111: 416-427 被引量:165
标识
DOI:10.1016/j.apenergy.2013.05.001
摘要

The online estimation of battery states and parameters is one of the challenging tasks when battery is used as a part of the pure electric or hybrid energy system. For the determination of the available energy stored in the battery, the knowledge of the present state-of-charge (SOC) and capacity of the battery is required. For SOC and capacity determination often the estimation of the battery electromotive force (EMF) is employed. The electromotive force can be measured as an open circuit voltage (OCV) of the battery when a significant time has elapsed since the current interruption. This time may take up to some hours for lithium-ion batteries and is needed to eliminate the influence of the diffusion overvoltages. This paper proposes a new approach to estimate the EMF by considering the OCV relaxation process within only some first minutes after the current interruption. The approach is based on an online fitting of an OCV relaxation model to the measured OCV relaxation curve. This model is based on an equivalent circuit consisting of a voltage source (represents the EMF) in series with the parallel connection of the resistance and a constant phase element (CPE). Based on this fitting the model parameters are determined and the EMF is estimated. The application of this method is exemplarily demonstrated for the state-of-charge and capacity estimation of the lithium-ion battery in an electrical vehicle. In the presented example the battery capacity is determined with the maximal inaccuracy of 2% using the EMF estimated at two different levels of state-of-charge. The real-time capability of the proposed algorithm is proven by its implementation on a low-cost 16-bit microcontroller (Infineon XC2287).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
tianzml0应助yatou5651采纳,获得30
1秒前
暮霭沉沉应助贪玩访文采纳,获得10
2秒前
一投就中完成签到,获得积分10
3秒前
科研通AI2S应助semigreen采纳,获得10
3秒前
3秒前
guo发布了新的文献求助10
4秒前
暮冬完成签到,获得积分10
4秒前
5秒前
韦明凯完成签到,获得积分20
5秒前
对酒当歌完成签到,获得积分20
6秒前
看不懂文献的进士完成签到,获得积分10
6秒前
cola完成签到,获得积分10
8秒前
Admin完成签到,获得积分10
8秒前
8秒前
栗子发布了新的文献求助10
12秒前
黄永祥发布了新的文献求助10
12秒前
土豆发布了新的文献求助30
12秒前
小龙完成签到,获得积分10
13秒前
峰宝宝发布了新的文献求助10
13秒前
沈宸完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
小菜鸡发布了新的文献求助10
17秒前
Tony12发布了新的文献求助10
17秒前
19秒前
烟花应助华电真垃圾采纳,获得10
19秒前
lkasjdfl完成签到,获得积分20
19秒前
20秒前
21秒前
居家家发布了新的文献求助10
22秒前
大模型应助贪玩访文采纳,获得10
22秒前
海湾电报发布了新的文献求助20
22秒前
拾壹发布了新的文献求助10
23秒前
23秒前
上官若男应助lkasjdfl采纳,获得30
24秒前
24秒前
BioRick发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157968
求助须知:如何正确求助?哪些是违规求助? 2809281
关于积分的说明 7881247
捐赠科研通 2467760
什么是DOI,文献DOI怎么找? 1313696
科研通“疑难数据库(出版商)”最低求助积分说明 630498
版权声明 601943