Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination

电动势 电池(电) 荷电状态 电压 反电动势 锂离子电池 电气工程 等效电路 恒流 电动汽车 控制理论(社会学) 开路电压 内阻 汽车工程 工程类 计算机科学 功率(物理) 物理 热力学 人工智能 控制(管理)
作者
Wladislaw Waag,Dirk Uwe Sauer
出处
期刊:Applied Energy [Elsevier]
卷期号:111: 416-427 被引量:165
标识
DOI:10.1016/j.apenergy.2013.05.001
摘要

The online estimation of battery states and parameters is one of the challenging tasks when battery is used as a part of the pure electric or hybrid energy system. For the determination of the available energy stored in the battery, the knowledge of the present state-of-charge (SOC) and capacity of the battery is required. For SOC and capacity determination often the estimation of the battery electromotive force (EMF) is employed. The electromotive force can be measured as an open circuit voltage (OCV) of the battery when a significant time has elapsed since the current interruption. This time may take up to some hours for lithium-ion batteries and is needed to eliminate the influence of the diffusion overvoltages. This paper proposes a new approach to estimate the EMF by considering the OCV relaxation process within only some first minutes after the current interruption. The approach is based on an online fitting of an OCV relaxation model to the measured OCV relaxation curve. This model is based on an equivalent circuit consisting of a voltage source (represents the EMF) in series with the parallel connection of the resistance and a constant phase element (CPE). Based on this fitting the model parameters are determined and the EMF is estimated. The application of this method is exemplarily demonstrated for the state-of-charge and capacity estimation of the lithium-ion battery in an electrical vehicle. In the presented example the battery capacity is determined with the maximal inaccuracy of 2% using the EMF estimated at two different levels of state-of-charge. The real-time capability of the proposed algorithm is proven by its implementation on a low-cost 16-bit microcontroller (Infineon XC2287).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到,获得积分10
1秒前
今后应助小宇采纳,获得10
1秒前
领导范儿应助Khr1stINK采纳,获得10
1秒前
汉堡包应助羊羊采纳,获得10
1秒前
KX发布了新的文献求助10
2秒前
落晨发布了新的文献求助10
2秒前
2秒前
geigeigei完成签到,获得积分10
2秒前
8564523发布了新的文献求助10
2秒前
3秒前
靓丽涵易完成签到,获得积分10
3秒前
3秒前
WHL完成签到,获得积分10
4秒前
JiaqiLiu完成签到,获得积分10
4秒前
4秒前
orixero应助charon采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
可爱的函函应助娜行采纳,获得10
5秒前
鱼圆杂铺完成签到 ,获得积分10
5秒前
Danielle完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
呆呆发布了新的文献求助10
6秒前
只只完成签到,获得积分20
6秒前
WNL发布了新的文献求助10
7秒前
彭珊完成签到,获得积分10
7秒前
Rocky发布了新的文献求助10
7秒前
Charon922完成签到,获得积分10
7秒前
7秒前
酒尚温发布了新的文献求助50
7秒前
7秒前
科目三应助黑米粥采纳,获得10
8秒前
共享精神应助AnasYusuf采纳,获得10
8秒前
8秒前
嘟嘟金子完成签到,获得积分10
8秒前
wyh发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678