Significance The performance of conventional carbon-supported catalysts is strongly influenced by the support morphology, which contains micropores, mesopores, and macropores. Whereas micropores host the majority of the active sites and macropores promote effective reagent/product mass transfer, mesopores contribute a limited role in both but occupy a significant fraction of the total pore volume. For catalytic applications where maximizing active site number and mass/charge transports with the highest possible catalyst density is essential, conventional carbon supports are no longer suitable. In this paper, we introduce a previously unidentified catalyst’s morphology with a high catalytic active surface concentrated nearly exclusively in micropores while transferring reactant/product via a macroporous nanofiber framework. The nonprecious metal catalyst with such architecture demonstrated unprecedented activity in fuel cell tests.