Optimizing the locations of electric taxi charging stations: A spatial–temporal demand coverage approach

充电站 电气化 计算机科学 背景(考古学) 运输工程 服务(商务) 航程(航空) 电动汽车 全球定位系统 电信 地理 工程类 功率(物理) 电气工程 物理 量子力学 考古 航空航天工程 经济 经济
作者
Wei Tu,Qingquan Li,Zhixiang Fang,Shih‐Lung Shaw,Baoding Zhou,Xiaomeng Chang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:65: 172-189 被引量:259
标识
DOI:10.1016/j.trc.2015.10.004
摘要

Vehicle electrification is a promising approach towards attaining green transportation. However, the absence of charging stations limits the penetration of electric vehicles. Current approaches for optimizing the locations of charging stations suffer from challenges associated with spatial–temporal dynamic travel demands and the lengthy period required for the charging process. The present article uses the electric taxi (ET) as an example to develop a spatial–temporal demand coverage approach for optimizing the placement of ET charging stations in the space–time context. To this end, public taxi demands with spatial and temporal attributes are extracted from massive taxi GPS data. The cyclical interactions between taxi demands, ETs, and charging stations are modeled with a spatial–temporal path tool. A location model is developed to maximize the level of ET service on the road network and the level of charging service at the stations under spatial and temporal constraints such as the ET range, the charging time, and the capacity of charging stations. The reduced carbon emission generated by used ETs with located charging stations is also evaluated. An experiment conducted in Shenzhen, China demonstrates that the proposed approach not only exhibits good performance in determining ET charging station locations by considering temporal attributes, but also achieves a high quality trade-off between the levels of ET service and charging service. The proposed approach and obtained results help the decision-making of urban ET charging station siting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷尔琴发布了新的文献求助10
1秒前
青水完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
冷酷尔琴完成签到,获得积分10
5秒前
onevip完成签到,获得积分0
7秒前
小莫完成签到 ,获得积分10
9秒前
18秒前
theseus完成签到,获得积分10
19秒前
胡楠完成签到,获得积分10
21秒前
北国雪未消完成签到 ,获得积分10
22秒前
李振博完成签到 ,获得积分10
22秒前
32秒前
雪妮完成签到 ,获得积分10
35秒前
松松发布了新的文献求助20
38秒前
38秒前
iwsaml完成签到 ,获得积分10
38秒前
Caden完成签到 ,获得积分10
41秒前
xmhxpz完成签到,获得积分10
42秒前
was_3完成签到,获得积分10
42秒前
聪慧板凳完成签到,获得积分10
46秒前
52秒前
buerzi完成签到,获得积分10
52秒前
魁梧的盼望完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助30
55秒前
58秒前
wzk完成签到,获得积分10
59秒前
称心翠容完成签到,获得积分10
1分钟前
LaixS完成签到,获得积分10
1分钟前
尊敬代亦发布了新的文献求助10
1分钟前
要笑cc完成签到,获得积分10
1分钟前
青珊发布了新的文献求助10
1分钟前
宣宣宣0733完成签到,获得积分10
1分钟前
俊逸吐司完成签到 ,获得积分10
1分钟前
ttxxcdx完成签到 ,获得积分10
1分钟前
胡质斌完成签到,获得积分10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
1分钟前
姚怜南完成签到,获得积分10
1分钟前
青珊完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022