清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Credibility in social media: opinions, news, and health information—a survey

误传 可靠性 社会化媒体 计算机科学 互联网隐私 微博 数据科学 质量(理念) 来源可信度 万维网 情报检索 政治学 计算机安全 认识论 哲学 法学
作者
Marco Viviani,Gabriella Pasi
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:7 (5) 被引量:183
标识
DOI:10.1002/widm.1209
摘要

In the Social Web scenario, where large amounts of User Generated Content diffuse through Social Media, the risk of running into misinformation is not negligible. For this reason, assessing and mining the credibility of both sources of information and information itself constitute nowadays a fundamental issue. Credibility, also referred as believability, is a quality perceived by individuals, who are not always able to discern with their cognitive capacities genuine information from the fake one. For this reason, in the recent years several approaches have been proposed to automatically assess credibility in Social Media. Most of them are based on data‐driven models, i.e., they employ machine‐learning techniques to identify misinformation, but recently also model‐driven approaches are emerging, as well as graph‐based approaches focusing on credibility propagation. Since multiple social applications have been developed for different aims and in different contexts, several solutions have been considered to address the issue of credibility assessment in Social Media. Three of the main tasks facing this issue and considered in this article concern: (1) the detection of opinion spam in review sites, (2) the detection of fake news and spam in microblogging, and (3) the credibility assessment of online health information. Despite the high number of interesting solutions proposed in the literature to tackle the above three tasks, some issues remain unsolved; they mainly concern both the absence of predefined benchmarks and gold standard datasets, and the difficulty of collecting and mining large amount of data, which has not yet received the attention it deserves. WIREs Data Mining Knowl Discov 2017, 7:e1209. doi: 10.1002/widm.1209 This article is categorized under: Algorithmic Development > Web Mining Application Areas > Science and Technology Technologies > Machine Learning
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ldd关闭了ldd文献求助
14秒前
Bond完成签到 ,获得积分10
38秒前
万能图书馆应助cassie采纳,获得10
47秒前
仿真小学生完成签到 ,获得积分10
1分钟前
kohu完成签到,获得积分10
1分钟前
ldd发布了新的文献求助10
1分钟前
宇文非笑完成签到 ,获得积分10
1分钟前
lotus完成签到,获得积分10
2分钟前
方白秋完成签到,获得积分10
3分钟前
ldd发布了新的文献求助10
5分钟前
Lucas应助翟半仙采纳,获得10
5分钟前
墨言无殇完成签到,获得积分10
6分钟前
huvy完成签到 ,获得积分10
6分钟前
内向的白玉完成签到 ,获得积分10
9分钟前
9分钟前
翟半仙发布了新的文献求助10
9分钟前
9分钟前
turui完成签到 ,获得积分10
9分钟前
jyy应助晶杰采纳,获得10
9分钟前
脑洞疼应助科研通管家采纳,获得10
10分钟前
翟半仙发布了新的文献求助20
10分钟前
fuueer完成签到 ,获得积分10
11分钟前
lixuebin完成签到 ,获得积分10
11分钟前
上官若男应助LJYang采纳,获得30
11分钟前
翟半仙完成签到,获得积分10
11分钟前
gy完成签到,获得积分10
12分钟前
华仔应助去去去去采纳,获得30
12分钟前
12分钟前
13分钟前
去去去去发布了新的文献求助30
13分钟前
方琼燕完成签到 ,获得积分10
13分钟前
段誉完成签到 ,获得积分10
13分钟前
yanhua完成签到,获得积分20
13分钟前
13分钟前
桐桐应助Mine采纳,获得10
14分钟前
14分钟前
14分钟前
Mine发布了新的文献求助10
14分钟前
14分钟前
Ava应助Mine采纳,获得50
14分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142749
求助须知:如何正确求助?哪些是违规求助? 2793651
关于积分的说明 7807057
捐赠科研通 2449903
什么是DOI,文献DOI怎么找? 1303531
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335