聚类分析
离群值
算法
稳健性(进化)
缩小
计算机科学
数据点
数学
熵(时间箭头)
数学优化
应用数学
人工智能
量子力学
生物化学
基因
物理
化学
作者
Trenton Kirchdoerfer,M. Ortíz
标识
DOI:10.1016/j.cma.2017.07.039
摘要
We formulate a Data Driven Computing paradigm, termed max-ent Data Driven Computing, that generalizes distance-minimizing Data Driven Computing and is robust with respect to outliers. Robustness is achieved by means of clustering analysis. Specifically, we assign data points a variable relevance depending on distance to the solution and on maximum-entropy estimation. The resulting scheme consists of the minimization of a suitably-defined free energy over phase space subject to compatibility and equilibrium constraints. Distance-minimizing Data Driven schemes are recovered in the limit of zero temperature. We present selected numerical tests that establish the convergence properties of the max-ent Data Driven solvers and solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI