Automatic segmentation and automatic seed point selection of nasopharyngeal carcinoma from microscopy images using region growing based approach

阈值 鼻咽癌 分割 喉部 人工智能 计算机科学 区域增长 模式识别(心理学) 计算机视觉 医学 图像分割 图像(数学) 放射科 外科 尺度空间分割 放射治疗
作者
Mazin Abed Mohammed,Mohd Khanapi Abd Ghani,Raed I. Hamed,Mohamad Khir Abdullah,Dheyaa Ahmed Ibrahim
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:20: 61-69 被引量:42
标识
DOI:10.1016/j.jocs.2017.03.009
摘要

Nasopharyngeal carcinoma (NPC) is a type of cancer in the head and neck, and this cancer presents in the throat region between the pharynx and nasal cavity. NPC is frequently detected in Southeast Asia, particularly in the southern part of China, Malaysia, Singapore, Hong Kong, Taiwan, Vietnam, and Thailand. The diagnostic procedure of NPC entirely depends on the Physicians experience and involves multiple subjective decisions. Subjective decision-making can result in inter and intra observer variations. Inter-observer variation is the total difference obtained from the results of two and above observers when scrutinizing similar materials. Variation amongst the observers is the total difference an observer experience when spotting the same material many times. Tradition diagnostic of NPC has many limitations such as the time consuming for doctors to identify and recognize the tumor area slice by slice and reduce radiologists’ workloads. In addition, another challenge lies in the appearance of doctors used the observation of human eyes (human errors) in NPC cases can be missed detailed information. A novel approach to automatic segmentation plus initial seed generated without human intervention of nasopharyngeal carcinoma using region growing based technique from microscopy images is presented in this study by take advantage of geometric features to detection of NPC images. In order to get accurate region of NPC image, the proposed results utilize wavelet transform for image enhancement by reduce the noise by remove the high ratio sub-bands and predestine a developed NPC image. Segmentation steps including many phases. Firstly, the thresholding is mean value used to binarise the image and secondly, filtering or remove unwanted objects in the images. The findings outcome from this study have shown that: (1) a new adaptive threshold is used as a post-processing to at long last detect the NPC; (2) identified and established an evaluation criterion for automatic segmentation of NPC cases; (3) highlight the methods, based on region growing based technique and active contour operation, for selecting the best region; (4) assessed the performance of the proposed results by comparing the manual measurements and automatic NPC segmentation. The NPC segmentation rate in the technique used is about 83.89%. Comparably, this amount expanded to 92.04% once a line presumption (NPC approximation) was utilized in one of the stage in the technique here.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
科研通AI6应助猫尔儿采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
su发布了新的文献求助10
3秒前
NexusExplorer应助123采纳,获得10
4秒前
shuyingRen发布了新的文献求助10
4秒前
huangtao完成签到,获得积分20
4秒前
冷艳招牌发布了新的文献求助10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
zyro完成签到,获得积分10
6秒前
轨迹应助加减乘除采纳,获得10
7秒前
犹豫的行恶应助zzz采纳,获得10
7秒前
8秒前
Rao完成签到 ,获得积分10
8秒前
9秒前
打打应助今天没有哭鸭采纳,获得10
10秒前
Jared应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
实验一定顺完成签到,获得积分10
10秒前
10秒前
11秒前
匿名应助科研通管家采纳,获得10
11秒前
11秒前
Ava应助科研通管家采纳,获得10
11秒前
zhonglv7应助科研通管家采纳,获得10
11秒前
11秒前
今后应助科研通管家采纳,获得10
11秒前
匿名应助科研通管家采纳,获得10
12秒前
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
zhonglv7应助科研通管家采纳,获得10
12秒前
12秒前
Live应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得20
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666560
求助须知:如何正确求助?哪些是违规求助? 4882496
关于积分的说明 15117625
捐赠科研通 4825585
什么是DOI,文献DOI怎么找? 2583523
邀请新用户注册赠送积分活动 1537653
关于科研通互助平台的介绍 1495895