卷积神经网络
降噪
计算机科学
人工智能
辐射剂量
图像质量
投影(关系代数)
噪音(视频)
图像去噪
人工神经网络
还原(数学)
模式识别(心理学)
计算机视觉
图像(数学)
核医学
数学
医学
算法
几何学
作者
Hu Chen,Yi Zhang,Weihua Zhang,Peixi Liao,Ke Li,Jiliu Zhou,Ge Wang
标识
DOI:10.1109/isbi.2017.7950488
摘要
To reduce the potential radiation risk, low-dose CT has attracted much attention. However, simply lowering the radiation dose will lead to significant deterioration of the image quality. In this paper, we propose a noise reduction method for low-dose CT via deep neural network without accessing original projection data. A deep convolutional neural network is trained to transform low-dose CT images towards normal-dose CT images, patch by patch. Visual and quantitative evaluation demonstrates a competing performance of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI