材料科学
电解质
微观结构
电池(电)
锂(药物)
阴极
电极
化学工程
介电谱
复合数
阳极
功率密度
快离子导体
电化学
储能
锂离子电池
复合材料
功率(物理)
热力学
电气工程
化学
物理
工程类
内分泌学
物理化学
医学
作者
Wenbo Zhang,Dominik A. Weber,Harald Weigand,Tobias Arlt,Ingo Manke,Daniel Schröder,Raimund Koerver,Thomas Leichtweiß,Pascal Hartmann,Wolfgang G. Zeier,Jürgen Janek
标识
DOI:10.1021/acsami.7b01137
摘要
All-solid-state lithium-ion batteries have the potential to become an important class of next-generation electrochemical energy storage devices. However, for achieving competitive performance, a better understanding of the interfacial processes at the electrodes is necessary for optimized electrode compositions to be developed. In this work, the interfacial processes between the solid electrolyte (Li10GeP2S12) and the electrode materials (In/InLi and LixCoO2) are monitored using impedance spectroscopy and galvanostatic cycling, showing a large resistance contribution and kinetic hindrance at the metal anode. The effect of different fractions of the solid electrolyte in the composite cathodes on the rate performance is tested. The results demonstrate the necessity of a carefully designed composite microstructure depending on the desired applications of an all-solid-state battery. While a relatively low mass fraction of solid electrolyte is sufficient for high energy density, a higher fraction of solid electrolyte is required for high power density.
科研通智能强力驱动
Strongly Powered by AbleSci AI