Comparison of Propensity Score Methods and Covariate Adjustment

协变量 倾向得分匹配 观察研究 混淆 医学 统计 逆概率加权 匹配(统计) 加权 边际结构模型 计量经济学 数学 外科 内科学 放射科
作者
Markus C. Elze,John Gregson,Usman Baber,Elizabeth Williamson,Samantha Sartori,Roxana Mehran,Melissa Nichols,Gregg W. Stone,Stuart Pocock
出处
期刊:Journal of the American College of Cardiology [Elsevier]
卷期号:69 (3): 345-357 被引量:454
标识
DOI:10.1016/j.jacc.2016.10.060
摘要

Propensity scores (PS) are an increasingly popular method to adjust for confounding in observational studies. Propensity score methods have theoretical advantages over conventional covariate adjustment, but their relative performance in real-word scenarios is poorly characterized. We used datasets from 4 large-scale cardiovascular observational studies (PROMETHEUS, ADAPT-DES [the Assessment of Dual AntiPlatelet Therapy with Drug-Eluting Stents], THIN [The Health Improvement Network], and CHARM [Candesartan in Heart Failure-Assessment of Reduction in Mortality and Morbidity]) to compare the performance of conventional covariate adjustment with 4 common PS methods: matching, stratification, inverse probability weighting, and use of PS as a covariate. We found that stratification performed poorly with few outcome events, and inverse probability weighting gave imprecise estimates of treatment effect and undue influence to a small number of observations when substantial confounding was present. Covariate adjustment and matching performed well in all of our examples, although matching tended to give less precise estimates in some cases. PS methods are not necessarily superior to conventional covariate adjustment, and care should be taken to select the most suitable method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
jiaayyin发布了新的文献求助20
2秒前
大模型应助jeeet采纳,获得10
4秒前
Lucas应助饱满的丹南采纳,获得10
5秒前
Lucas应助TYT采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
小宇完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Rico_完成签到,获得积分10
7秒前
7秒前
丘比特应助你好这位仁兄采纳,获得10
7秒前
个性的紫菜应助Xx丶采纳,获得10
8秒前
8秒前
NexusExplorer应助David采纳,获得10
8秒前
小陈爱涂六神完成签到 ,获得积分10
8秒前
9秒前
9秒前
Fearless发布了新的文献求助10
10秒前
苗玉发布了新的文献求助10
10秒前
许十五完成签到,获得积分10
10秒前
Possession发布了新的文献求助10
10秒前
777发布了新的文献求助10
10秒前
Mark应助科研通管家采纳,获得10
11秒前
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
xhh应助科研通管家采纳,获得10
11秒前
三点半完成签到,获得积分10
11秒前
枯藤应助科研通管家采纳,获得10
11秒前
11秒前
123发布了新的文献求助10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078