吸附
材料科学
中子散射
环氧乙烷
氧化物
纳米复合材料
聚合物
玻璃化转变
散射
溶剂
高分子化学
化学
物理化学
有机化学
复合材料
光学
共聚物
冶金
物理
作者
Yury Golitsyn,Gerald J. Schneider,Kay Saalwächter
摘要
A series of poly(ethylene oxide) nanocomposites with spherical silica was studied by proton NMR spectroscopy, identifying and characterizing reduced-mobility components arising from either room-temperature lateral adsorption or possibly end-group mediated high-temperature bonding to the silica surface. The study complements earlier neutron-scattering results for some of the samples. The estimated thickness of a layer characterized by significant internal mobility resembling backbone rotation ranges from 2 nm for longer (20 k) chains adsorbed on 42 nm diameter particles to 0.5 nm and below for shorter (2 k) chains on 13 nm particles. In the latter case, even lower adsorbed amounts are found when hydroxy endgroups are replaced by methyl endgroups. Both heating and water addition do not lead to significant changes of the observables, in contrast to other systems such as acrylate polymers adsorbed to silica, where temperature- and solvent-induced softening associated with a glass transition temperature gradient was evidenced. We highlight the actual agreement and complementarity of NMR and neutron scattering results, with the earlier ambiguities mainly arising from different sensitivities to the component fractions and the details of their mobility.
科研通智能强力驱动
Strongly Powered by AbleSci AI