Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population

医学 动脉粥样硬化性心血管疾病 心脏病学 内科学 疾病 人口 环境卫生
作者
Xueli Yang,Jianxin Li,Dongsheng Hu,Jichun Chen,Ying Li,Jianfeng Huang,Xiaoqing Liu,Fangchao Liu,Jie Cao,Chong Shen,Ling Yu,Fanghong Lu,Xianping Wu,Liancheng Zhao,Xigui Wu,Dongfeng Gu
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:134 (19): 1430-1440 被引量:529
标识
DOI:10.1161/circulationaha.116.022367
摘要

The accurate assessment of individual risk can be of great value to guiding and facilitating the prevention of atherosclerotic cardiovascular disease (ASCVD). However, prediction models in common use were formulated primarily in white populations. The China-PAR project (Prediction for ASCVD Risk in China) is aimed at developing and validating 10-year risk prediction equations for ASCVD from 4 contemporary Chinese cohorts.Two prospective studies followed up together with a unified protocol were used as the derivation cohort to develop 10-year ASCVD risk equations in 21 320 Chinese participants. The external validation was evaluated in 2 independent Chinese cohorts with 14 123 and 70 838 participants. Furthermore, model performance was compared with the Pooled Cohort Equations reported in the American College of Cardiology/American Heart Association guideline.Over 12 years of follow-up in the derivation cohort with 21 320 Chinese participants, 1048 subjects developed a first ASCVD event. Sex-specific equations had C statistics of 0.794 (95% confidence interval, 0.775-0.814) for men and 0.811 (95% confidence interval, 0.787-0.835) for women. The predicted rates were similar to the observed rates, as indicated by a calibration χ2 of 13.1 for men (P=0.16) and 12.8 for women (P=0.17). Good internal and external validations of our equations were achieved in subsequent analyses. Compared with the Chinese equations, the Pooled Cohort Equations had lower C statistics and much higher calibration χ2 values in men.Our project developed effective tools with good performance for 10-year ASCVD risk prediction among a Chinese population that will help to improve the primary prevention and management of cardiovascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助youyuer采纳,获得10
1秒前
1秒前
2秒前
打打应助kyJYbs采纳,获得10
3秒前
grmqgq发布了新的文献求助10
3秒前
淡定的彩虹完成签到,获得积分10
3秒前
李爱国应助呆萌的傲旋采纳,获得10
4秒前
三家村猛虎完成签到 ,获得积分10
4秒前
独特浩然发布了新的文献求助20
4秒前
迟迟完成签到,获得积分10
5秒前
李健应助十一采纳,获得10
5秒前
Orange应助十一采纳,获得10
5秒前
顾矜应助十一采纳,获得10
5秒前
万能图书馆应助十一采纳,获得10
5秒前
科研通AI6应助十一采纳,获得10
5秒前
Orange应助十一采纳,获得10
5秒前
情怀应助十一采纳,获得10
5秒前
烟花应助无奈狗采纳,获得10
5秒前
6秒前
鱼yu发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
默默寄松发布了新的文献求助50
8秒前
9秒前
wlscj应助辛禹采纳,获得20
9秒前
独钓寒江雪完成签到 ,获得积分10
9秒前
明理的以亦应助米其林采纳,获得30
10秒前
10秒前
11秒前
liwei发布了新的文献求助10
11秒前
白智妍发布了新的文献求助10
11秒前
天天发布了新的文献求助10
12秒前
12秒前
ding应助mym采纳,获得10
12秒前
di发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196280
求助须知:如何正确求助?哪些是违规求助? 4378008
关于积分的说明 13634839
捐赠科研通 4233464
什么是DOI,文献DOI怎么找? 2322279
邀请新用户注册赠送积分活动 1320400
关于科研通互助平台的介绍 1270764