亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adjusted Analyses in Studies Addressing Therapy and Harm

观察研究 医学 工具变量 结果(博弈论) 倾向得分匹配 随机化 干预(咨询) 选择偏差 危害 随机对照试验 计量经济学 统计 内科学 心理学 精神科 病理 数理经济学 社会心理学 经济 数学
作者
Thomas Agoritsas,Arnaud Merglen,Nilay D. Shah,Martin O’Donnell,Gordon Guyatt
出处
期刊:JAMA [American Medical Association]
卷期号:317 (7): 748-748 被引量:147
标识
DOI:10.1001/jama.2016.20029
摘要

Observational studies almost always have bias because prognostic factors are unequally distributed between patients exposed or not exposed to an intervention. The standard approach to dealing with this problem is adjusted or stratified analysis. Its principle is to use measurement of risk factors to create prognostically homogeneous groups and to combine effect estimates across groups.The purpose of this Users' Guide is to introduce readers to fundamental concepts underlying adjustment as a way of dealing with prognostic imbalance and to the basic principles and relative trustworthiness of various adjustment strategies.One alternative to the standard approach is propensity analysis, in which groups are matched according to the likelihood of membership in exposed or unexposed groups. Propensity methods can deal with multiple prognostic factors, even if there are relatively few patients having outcome events. However, propensity methods do not address other limitations of traditional adjustment: investigators may not have measured all relevant prognostic factors (or not accurately), and unknown factors may bias the results.A second approach, instrumental variable analysis, relies on identifying a variable associated with the likelihood of receiving the intervention but not associated with any prognostic factor or with the outcome (other than through the intervention); this could mimic randomization. However, as with assumptions of other adjustment approaches, it is never certain if an instrumental variable analysis eliminates bias.Although all these approaches can reduce the risk of bias in observational studies, none replace the balance of both known and unknown prognostic factors offered by randomization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
2秒前
心儿完成签到,获得积分10
3秒前
3秒前
林淼发布了新的文献求助10
4秒前
kosangel发布了新的文献求助10
6秒前
禾禾禾完成签到 ,获得积分10
17秒前
20秒前
21秒前
22秒前
zzz发布了新的文献求助10
25秒前
zzz完成签到,获得积分10
30秒前
情怀应助谣谣采纳,获得10
33秒前
xxx完成签到,获得积分10
33秒前
chuzihang完成签到 ,获得积分10
33秒前
科研通AI6应助重重采纳,获得10
34秒前
烟花应助zzz采纳,获得30
36秒前
xiaohan,JIA完成签到,获得积分10
36秒前
朴素海亦完成签到 ,获得积分10
38秒前
41秒前
抚琴祛魅完成签到 ,获得积分10
44秒前
谣谣发布了新的文献求助10
44秒前
newplayer发布了新的文献求助10
45秒前
福斯卡完成签到 ,获得积分10
55秒前
55秒前
56秒前
1分钟前
科目三应助那咋了采纳,获得10
1分钟前
yunshui完成签到,获得积分10
1分钟前
1分钟前
纯属小白完成签到 ,获得积分10
1分钟前
林好事发布了新的文献求助10
1分钟前
1分钟前
纯属小白关注了科研通微信公众号
1分钟前
newplayer发布了新的文献求助10
1分钟前
1分钟前
大个应助冷酷的依霜采纳,获得10
1分钟前
zxcvbnm发布了新的文献求助20
1分钟前
壶壶壶完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463119
求助须知:如何正确求助?哪些是违规求助? 4567919
关于积分的说明 14311980
捐赠科研通 4493749
什么是DOI,文献DOI怎么找? 2461864
邀请新用户注册赠送积分活动 1450876
关于科研通互助平台的介绍 1426051