Adjusted Analyses in Studies Addressing Therapy and Harm

观察研究 医学 工具变量 结果(博弈论) 倾向得分匹配 随机化 干预(咨询) 选择偏差 危害 随机对照试验 计量经济学 统计 内科学 心理学 精神科 病理 数理经济学 社会心理学 经济 数学
作者
Thomas Agoritsas,Arnaud Merglen,Nilay D. Shah,Martin O’Donnell,Gordon Guyatt
出处
期刊:JAMA [American Medical Association]
卷期号:317 (7): 748-748 被引量:147
标识
DOI:10.1001/jama.2016.20029
摘要

Observational studies almost always have bias because prognostic factors are unequally distributed between patients exposed or not exposed to an intervention. The standard approach to dealing with this problem is adjusted or stratified analysis. Its principle is to use measurement of risk factors to create prognostically homogeneous groups and to combine effect estimates across groups.The purpose of this Users' Guide is to introduce readers to fundamental concepts underlying adjustment as a way of dealing with prognostic imbalance and to the basic principles and relative trustworthiness of various adjustment strategies.One alternative to the standard approach is propensity analysis, in which groups are matched according to the likelihood of membership in exposed or unexposed groups. Propensity methods can deal with multiple prognostic factors, even if there are relatively few patients having outcome events. However, propensity methods do not address other limitations of traditional adjustment: investigators may not have measured all relevant prognostic factors (or not accurately), and unknown factors may bias the results.A second approach, instrumental variable analysis, relies on identifying a variable associated with the likelihood of receiving the intervention but not associated with any prognostic factor or with the outcome (other than through the intervention); this could mimic randomization. However, as with assumptions of other adjustment approaches, it is never certain if an instrumental variable analysis eliminates bias.Although all these approaches can reduce the risk of bias in observational studies, none replace the balance of both known and unknown prognostic factors offered by randomization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助MIranda采纳,获得10
刚刚
ahah完成签到,获得积分10
1秒前
1秒前
1秒前
受伤白昼发布了新的文献求助10
2秒前
2秒前
1010完成签到,获得积分10
2秒前
这个名字就比原来的好听完成签到,获得积分10
2秒前
comeon完成签到,获得积分10
3秒前
yunyunya发布了新的文献求助10
3秒前
4秒前
WYW发布了新的文献求助10
4秒前
嘿嘿发布了新的文献求助10
4秒前
研友_VZG7GZ应助南小槿采纳,获得10
5秒前
额尔其子应助efine采纳,获得10
5秒前
李爱国应助彩色的德地采纳,获得10
5秒前
里里完成签到,获得积分10
5秒前
peng完成签到,获得积分10
5秒前
CQY完成签到 ,获得积分10
5秒前
6秒前
6秒前
共享精神应助渤海少年采纳,获得10
6秒前
vocrious完成签到,获得积分10
6秒前
科研通AI5应助呆萌的寄风采纳,获得10
6秒前
大个应助林雾采纳,获得10
7秒前
隔壁发布了新的文献求助10
7秒前
212774完成签到,获得积分10
7秒前
法号胡来完成签到,获得积分10
8秒前
李景奥完成签到,获得积分10
8秒前
杳杳完成签到 ,获得积分10
8秒前
sam完成签到,获得积分10
8秒前
田様应助稳重初蓝采纳,获得10
9秒前
文卿发布了新的文献求助20
10秒前
如意发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助50
11秒前
11秒前
婷婷发布了新的文献求助10
11秒前
琴琴iam完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569