Adjusted Analyses in Studies Addressing Therapy and Harm

观察研究 医学 工具变量 结果(博弈论) 倾向得分匹配 随机化 干预(咨询) 选择偏差 危害 随机对照试验 计量经济学 统计 内科学 心理学 精神科 病理 数理经济学 社会心理学 经济 数学
作者
Thomas Agoritsas,Arnaud Merglen,Nilay D. Shah,Martin O’Donnell,Gordon Guyatt
出处
期刊:JAMA [American Medical Association]
卷期号:317 (7): 748-748 被引量:139
标识
DOI:10.1001/jama.2016.20029
摘要

Observational studies almost always have bias because prognostic factors are unequally distributed between patients exposed or not exposed to an intervention. The standard approach to dealing with this problem is adjusted or stratified analysis. Its principle is to use measurement of risk factors to create prognostically homogeneous groups and to combine effect estimates across groups.The purpose of this Users' Guide is to introduce readers to fundamental concepts underlying adjustment as a way of dealing with prognostic imbalance and to the basic principles and relative trustworthiness of various adjustment strategies.One alternative to the standard approach is propensity analysis, in which groups are matched according to the likelihood of membership in exposed or unexposed groups. Propensity methods can deal with multiple prognostic factors, even if there are relatively few patients having outcome events. However, propensity methods do not address other limitations of traditional adjustment: investigators may not have measured all relevant prognostic factors (or not accurately), and unknown factors may bias the results.A second approach, instrumental variable analysis, relies on identifying a variable associated with the likelihood of receiving the intervention but not associated with any prognostic factor or with the outcome (other than through the intervention); this could mimic randomization. However, as with assumptions of other adjustment approaches, it is never certain if an instrumental variable analysis eliminates bias.Although all these approaches can reduce the risk of bias in observational studies, none replace the balance of both known and unknown prognostic factors offered by randomization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Amazing发布了新的文献求助10
1秒前
1秒前
昵称发布了新的文献求助10
1秒前
CodeCraft应助加油采纳,获得10
1秒前
orixero应助沈嘀嘀采纳,获得10
1秒前
夏瑞发布了新的文献求助10
3秒前
3秒前
milk完成签到,获得积分10
3秒前
高大绝义发布了新的文献求助10
4秒前
haha完成签到,获得积分10
4秒前
呵呵功夫不负完成签到,获得积分20
4秒前
4秒前
tdtk发布了新的文献求助10
7秒前
木木彡发布了新的文献求助10
7秒前
8秒前
9秒前
A毛巾哦发布了新的文献求助10
11秒前
11秒前
不要碧莲发布了新的文献求助10
12秒前
13秒前
13秒前
Jasper应助简单的宛海采纳,获得10
13秒前
koko完成签到,获得积分10
13秒前
Amy完成签到,获得积分10
14秒前
xixi完成签到 ,获得积分20
14秒前
17秒前
苹果树下的懒洋洋完成签到 ,获得积分10
18秒前
柯一一应助一块云采纳,获得10
18秒前
絮甯完成签到 ,获得积分10
18秒前
19秒前
邰墨以完成签到 ,获得积分10
19秒前
木子水告完成签到,获得积分10
20秒前
HJJ发布了新的文献求助10
20秒前
ding应助sensen采纳,获得10
20秒前
21秒前
DreamRunner0410完成签到 ,获得积分10
21秒前
科研民工_郭完成签到,获得积分10
21秒前
简单的宛海完成签到,获得积分10
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953047
求助须知:如何正确求助?哪些是违规求助? 3498423
关于积分的说明 11091889
捐赠科研通 3229062
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869228
科研通“疑难数据库(出版商)”最低求助积分说明 801415