Adjusted Analyses in Studies Addressing Therapy and Harm

观察研究 医学 工具变量 结果(博弈论) 倾向得分匹配 随机化 干预(咨询) 选择偏差 危害 随机对照试验 计量经济学 统计 内科学 心理学 精神科 病理 数理经济学 社会心理学 经济 数学
作者
Thomas Agoritsas,Arnaud Merglen,Nilay D. Shah,Martin O’Donnell,Gordon Guyatt
出处
期刊:JAMA [American Medical Association]
卷期号:317 (7): 748-748 被引量:121
标识
DOI:10.1001/jama.2016.20029
摘要

Observational studies almost always have bias because prognostic factors are unequally distributed between patients exposed or not exposed to an intervention. The standard approach to dealing with this problem is adjusted or stratified analysis. Its principle is to use measurement of risk factors to create prognostically homogeneous groups and to combine effect estimates across groups. The purpose of this Users’ Guide is to introduce readers to fundamental concepts underlying adjustment as a way of dealing with prognostic imbalance and to the basic principles and relative trustworthiness of various adjustment strategies. One alternative to the standard approach is propensity analysis, in which groups are matched according to the likelihood of membership in exposed or unexposed groups. Propensity methods can deal with multiple prognostic factors, even if there are relatively few patients having outcome events. However, propensity methods do not address other limitations of traditional adjustment: investigators may not have measured all relevant prognostic factors (or not accurately), and unknown factors may bias the results. A second approach, instrumental variable analysis, relies on identifying a variable associated with the likelihood of receiving the intervention but not associated with any prognostic factor or with the outcome (other than through the intervention); this could mimic randomization. However, as with assumptions of other adjustment approaches, it is never certain if an instrumental variable analysis eliminates bias. Although all these approaches can reduce the risk of bias in observational studies, none replace the balance of both known and unknown prognostic factors offered by randomization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
再说发布了新的文献求助10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
1秒前
WWXWWX应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
Vvvnnnaa1发布了新的文献求助10
1秒前
1秒前
mmyhn应助科研通管家采纳,获得20
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
stellafreeman发布了新的文献求助10
3秒前
pluto应助RBB采纳,获得10
5秒前
China发布了新的文献求助10
5秒前
亚米发布了新的文献求助20
5秒前
6秒前
小熊饼干发布了新的文献求助30
7秒前
7秒前
8秒前
852应助INnovation采纳,获得10
8秒前
8秒前
Lumi完成签到,获得积分10
9秒前
9秒前
田様应助再说采纳,获得10
9秒前
9秒前
老谢医生完成签到,获得积分10
11秒前
12秒前
niuniu发布了新的文献求助10
12秒前
12秒前
烂漫的紫槐完成签到 ,获得积分10
13秒前
13秒前
科目三应助风趣彤采纳,获得10
14秒前
852应助春携秋水揽星河采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3061124
求助须知:如何正确求助?哪些是违规求助? 2716510
关于积分的说明 7450143
捐赠科研通 2362455
什么是DOI,文献DOI怎么找? 1252166
科研通“疑难数据库(出版商)”最低求助积分说明 607939
版权声明 596536