Adjusted Analyses in Studies Addressing Therapy and Harm

观察研究 医学 工具变量 结果(博弈论) 倾向得分匹配 随机化 干预(咨询) 选择偏差 危害 随机对照试验 计量经济学 统计 内科学 心理学 精神科 病理 数理经济学 社会心理学 经济 数学
作者
Thomas Agoritsas,Arnaud Merglen,Nilay D. Shah,Martin O’Donnell,Gordon Guyatt
出处
期刊:JAMA [American Medical Association]
卷期号:317 (7): 748-748 被引量:147
标识
DOI:10.1001/jama.2016.20029
摘要

Observational studies almost always have bias because prognostic factors are unequally distributed between patients exposed or not exposed to an intervention. The standard approach to dealing with this problem is adjusted or stratified analysis. Its principle is to use measurement of risk factors to create prognostically homogeneous groups and to combine effect estimates across groups.The purpose of this Users' Guide is to introduce readers to fundamental concepts underlying adjustment as a way of dealing with prognostic imbalance and to the basic principles and relative trustworthiness of various adjustment strategies.One alternative to the standard approach is propensity analysis, in which groups are matched according to the likelihood of membership in exposed or unexposed groups. Propensity methods can deal with multiple prognostic factors, even if there are relatively few patients having outcome events. However, propensity methods do not address other limitations of traditional adjustment: investigators may not have measured all relevant prognostic factors (or not accurately), and unknown factors may bias the results.A second approach, instrumental variable analysis, relies on identifying a variable associated with the likelihood of receiving the intervention but not associated with any prognostic factor or with the outcome (other than through the intervention); this could mimic randomization. However, as with assumptions of other adjustment approaches, it is never certain if an instrumental variable analysis eliminates bias.Although all these approaches can reduce the risk of bias in observational studies, none replace the balance of both known and unknown prognostic factors offered by randomization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
husi发布了新的文献求助10
1秒前
背后寒烟发布了新的文献求助10
1秒前
大豆终结者完成签到,获得积分10
1秒前
1秒前
2秒前
研友_VZG7GZ应助重要的甜甜采纳,获得10
2秒前
科研通AI2S应助AUGKING27采纳,获得10
2秒前
123发布了新的文献求助10
3秒前
zzrg完成签到,获得积分10
4秒前
4秒前
5秒前
yyyyy发布了新的文献求助10
5秒前
6秒前
yznfly举报whiteside求助涉嫌违规
6秒前
小白发布了新的文献求助10
7秒前
图图完成签到 ,获得积分10
7秒前
俏皮的老城完成签到 ,获得积分10
7秒前
李晨源发布了新的文献求助10
8秒前
cherish发布了新的文献求助10
9秒前
瓦尔迪发布了新的文献求助200
10秒前
黎咩e茹完成签到,获得积分10
10秒前
科研通AI6应助tjxx采纳,获得10
10秒前
May发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
排骨年糕完成签到 ,获得积分10
13秒前
思源应助超越好帅采纳,获得10
14秒前
linkman发布了新的文献求助100
15秒前
16秒前
李晨源完成签到,获得积分10
18秒前
真君山山长完成签到,获得积分10
18秒前
19秒前
000发布了新的文献求助30
21秒前
百会完成签到,获得积分10
21秒前
maoamo2024发布了新的文献求助10
22秒前
竹远完成签到,获得积分10
22秒前
哈哈发布了新的文献求助10
22秒前
搜集达人应助小骄傲采纳,获得10
23秒前
彩泥发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649707
求助须知:如何正确求助?哪些是违规求助? 4779165
关于积分的说明 15050119
捐赠科研通 4808741
什么是DOI,文献DOI怎么找? 2571782
邀请新用户注册赠送积分活动 1528105
关于科研通互助平台的介绍 1486871