Adjusted Analyses in Studies Addressing Therapy and Harm

观察研究 医学 工具变量 结果(博弈论) 倾向得分匹配 随机化 干预(咨询) 选择偏差 危害 随机对照试验 计量经济学 统计 内科学 心理学 精神科 病理 数理经济学 社会心理学 经济 数学
作者
Thomas Agoritsas,Arnaud Merglen,Nilay D. Shah,Martin O’Donnell,Gordon Guyatt
出处
期刊:JAMA [American Medical Association]
卷期号:317 (7): 748-748 被引量:133
标识
DOI:10.1001/jama.2016.20029
摘要

Observational studies almost always have bias because prognostic factors are unequally distributed between patients exposed or not exposed to an intervention. The standard approach to dealing with this problem is adjusted or stratified analysis. Its principle is to use measurement of risk factors to create prognostically homogeneous groups and to combine effect estimates across groups.The purpose of this Users' Guide is to introduce readers to fundamental concepts underlying adjustment as a way of dealing with prognostic imbalance and to the basic principles and relative trustworthiness of various adjustment strategies.One alternative to the standard approach is propensity analysis, in which groups are matched according to the likelihood of membership in exposed or unexposed groups. Propensity methods can deal with multiple prognostic factors, even if there are relatively few patients having outcome events. However, propensity methods do not address other limitations of traditional adjustment: investigators may not have measured all relevant prognostic factors (or not accurately), and unknown factors may bias the results.A second approach, instrumental variable analysis, relies on identifying a variable associated with the likelihood of receiving the intervention but not associated with any prognostic factor or with the outcome (other than through the intervention); this could mimic randomization. However, as with assumptions of other adjustment approaches, it is never certain if an instrumental variable analysis eliminates bias.Although all these approaches can reduce the risk of bias in observational studies, none replace the balance of both known and unknown prognostic factors offered by randomization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SEV完成签到,获得积分20
刚刚
愉快迎荷完成签到,获得积分10
1秒前
矮小的聪展完成签到,获得积分10
2秒前
factor完成签到,获得积分10
2秒前
Hello应助李来仪采纳,获得10
3秒前
SEV发布了新的文献求助10
3秒前
3秒前
3秒前
坚强亦丝应助隐形机器猫采纳,获得10
4秒前
小马甲应助SCI采纳,获得10
5秒前
老疯智发布了新的文献求助10
5秒前
sweetbearm应助通~采纳,获得10
5秒前
神凰完成签到,获得积分10
5秒前
Z小姐发布了新的文献求助10
6秒前
NexusExplorer应助白泽采纳,获得10
6秒前
7秒前
7秒前
火星上妙梦完成签到 ,获得积分10
7秒前
赘婿应助mayungui采纳,获得10
7秒前
贾不可发布了新的文献求助10
8秒前
英俊梦槐发布了新的文献求助30
8秒前
Xu完成签到,获得积分10
9秒前
9秒前
秀丽千山完成签到,获得积分10
9秒前
10秒前
11秒前
哈哈哈哈完成签到,获得积分10
11秒前
沧海泪发布了新的文献求助10
12秒前
小胡先森应助凤凰山采纳,获得10
12秒前
一一完成签到,获得积分10
12秒前
惠惠发布了新的文献求助10
12秒前
shotgod完成签到,获得积分20
13秒前
科研通AI5应助蕾子采纳,获得10
13秒前
happy杨完成签到 ,获得积分10
13秒前
lichaoyes发布了新的文献求助10
13秒前
13秒前
Owen应助通~采纳,获得10
13秒前
封闭货车发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794