Artificial intelligence for predicting solar still production and comparison with stepwise regression under arid climate

偶像 引用 生产(经济) 人工智能 计算机科学 工程类 图书馆学 经济 宏观经济学 程序设计语言
作者
Ahmed F. Mashaly,A. A. Alazba
出处
期刊:Aqua [IWA Publishing]
卷期号:66 (3): 166-177 被引量:12
标识
DOI:10.2166/aqua.2017.046
摘要

Research Article| January 30 2017 Artificial intelligence for predicting solar still production and comparison with stepwise regression under arid climate Ahmed F. Mashaly; Ahmed F. Mashaly 1Alamoudi Water Research Chair, King Saud University, Riyadh, Saudi Arabia E-mail: mashaly.ahmed@gmail.com Search for other works by this author on: This Site PubMed Google Scholar A. A. Alazba A. A. Alazba 1Alamoudi Water Research Chair, King Saud University, Riyadh, Saudi Arabia2Agricultural Engineering Department, King Saud University, Riyadh, Saudi Arabia Search for other works by this author on: This Site PubMed Google Scholar Journal of Water Supply: Research and Technology-Aqua (2017) 66 (3): 166–177. https://doi.org/10.2166/aqua.2017.046 Article history Received: May 24 2016 Accepted: November 20 2016 Views Icon Views Article contents Figures & tables Video Audio Supplementary Data Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Cite Icon Cite Permissions Search Site Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentAll JournalsThis Journal Search Advanced Search Citation Ahmed F. Mashaly, A. A. Alazba; Artificial intelligence for predicting solar still production and comparison with stepwise regression under arid climate. Journal of Water Supply: Research and Technology-Aqua 1 May 2017; 66 (3): 166–177. doi: https://doi.org/10.2166/aqua.2017.046 Download citation file: Ris (Zotero) Reference Manager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex Forecasting the efficiency of solar still production (SSP) can reduce the capital risks involved in a solar desalination project. Solar desalination is an attractive method of water desalination and offers a more reliable water source. In this study, to estimate SSP, we employed the data obtained from experimental fieldwork. SSP is assumed to be a function of ambient temperature, relative humidity, wind speed, solar radiation, feed flow rate, temperature of feed water, and total dissolved solids in feed water. In this study, back-propagation artificial neural network (ANN) models with two transfer functions were adopted for predicting SSP. The best performance was obtained by the ANN model with one hidden layer having eight neurons which employed the hyperbolic transfer function. Results of the ANN model were compared with those of stepwise regression (SWR) model. ANN model produced more accurate results compared to SWR model in all modeling stages. Mean values for the coefficient of determination and root mean square error by ANN model were 0.960 and 0.047 L/m2/h, respectively. Relative errors of predicted SSP values by ANN model were about ±10%. In conclusion, the ANN model showed greater potential in accurately predicting SSP, whereas the SWR model showed poor performance. artificial neural network, modeling, solar still production, stepwise regression © IWA Publishing 2017 You do not currently have access to this content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
孤独问旋发布了新的文献求助30
2秒前
3秒前
lyf完成签到,获得积分20
5秒前
华仔应助南工菜研采纳,获得10
6秒前
饭勺小子发布了新的文献求助10
8秒前
9秒前
科研通AI2S应助孤独问旋采纳,获得10
10秒前
阿伟爱打球完成签到,获得积分10
11秒前
搞怪的凡蕾完成签到,获得积分10
11秒前
斩封发布了新的文献求助10
12秒前
思源应助郑迎浪采纳,获得10
15秒前
16秒前
娃哈哈大魔王完成签到,获得积分10
16秒前
大模型应助饭勺小子采纳,获得10
17秒前
淡淡的若冰应助房山芙采纳,获得10
19秒前
21秒前
香蕉觅云应助占小瓜采纳,获得10
21秒前
张大白发布了新的文献求助10
21秒前
Lucas应助背后的幻巧采纳,获得10
21秒前
24秒前
潇洒大开完成签到,获得积分20
24秒前
慕青应助Stitch采纳,获得30
24秒前
25秒前
26秒前
27秒前
MIMIXUAN发布了新的文献求助10
30秒前
Yasmine发布了新的文献求助10
30秒前
31秒前
LingYun发布了新的文献求助30
32秒前
张大白完成签到,获得积分10
32秒前
海棠依旧发布了新的文献求助20
33秒前
123发布了新的文献求助10
34秒前
34秒前
无私书雪发布了新的文献求助10
35秒前
35秒前
殷勤的阑悦完成签到 ,获得积分10
36秒前
36秒前
37秒前
Stitch发布了新的文献求助30
37秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919