An efficient constraint handling method for genetic algorithms

惩罚法 锦标赛选拔 渡线 可行区 约束优化 计算机科学 算法 最优化问题 操作员(生物学) 约束(计算机辅助设计) 功能(生物学) 数学优化 数学 遗传算法 几何学 人工智能 进化生物学 转录因子 生物 基因 生物化学 抑制因子 化学
作者
Kalyanmoy Deb
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:186 (2-4): 311-338 被引量:3687
标识
DOI:10.1016/s0045-7825(99)00389-8
摘要

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using genetic algorithms (GAs) or classical optimization methods, penalty function methods have been the most popular approach, because of their simplicity and ease of implementation. However, since the penalty function approach is generic and applicable to any type of constraint (linear or nonlinear), their performance is not always satisfactory. Thus, researchers have developed sophisticated penalty functions specific to the problem at hand and the search algorithm used for optimization. However, the most difficult aspect of the penalty function approach is to find appropriate penalty parameters needed to guide the search towards the constrained optimum. In this paper, GA's population-based approach and ability to make pair-wise comparison in tournament selection operator are exploited to devise a penalty function approach that does not require any penalty parameter. Careful comparisons among feasible and infeasible solutions are made so as to provide a search direction towards the feasible region. Once sufficient feasible solutions are found, a niching method (along with a controlled mutation operator) is used to maintain diversity among feasible solutions. This allows a real-parameter GA's crossover operator to continuously find better feasible solutions, gradually leading the search near the true optimum solution. GAs with this constraint handling approach have been tested on nine problems commonly used in the literature, including an engineering design problem. In all cases, the proposed approach has been able to repeatedly find solutions closer to the true optimum solution than that reported earlier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
上官若男应助小海棉采纳,获得10
2秒前
腾腾完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
科研通AI2S应助AoAoo采纳,获得10
3秒前
4秒前
4秒前
4秒前
武雨珍发布了新的文献求助10
5秒前
烂漫的汲完成签到,获得积分10
5秒前
。。发布了新的文献求助10
6秒前
华仔应助女汉志采纳,获得10
6秒前
长情奇异果完成签到,获得积分10
7秒前
8秒前
当归发布了新的文献求助10
8秒前
ami发布了新的文献求助10
8秒前
冰冰双双完成签到,获得积分10
9秒前
无恙应助科研通管家采纳,获得10
9秒前
斯文败类应助敏感远锋采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
恰好发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
ding应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得20
10秒前
10秒前
10秒前
10秒前
洁净艳一完成签到,获得积分10
11秒前
小白菜完成签到 ,获得积分10
11秒前
zy发布了新的文献求助10
11秒前
11秒前
12秒前
aikka发布了新的文献求助10
13秒前
热爱学习的小罗同学呀完成签到,获得积分10
14秒前
SciGPT应助yy采纳,获得10
14秒前
淮安石河子完成签到 ,获得积分10
15秒前
曈曦完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618349
求助须知:如何正确求助?哪些是违规求助? 4703244
关于积分的说明 14921791
捐赠科研通 4757233
什么是DOI,文献DOI怎么找? 2550059
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299