An efficient constraint handling method for genetic algorithms

惩罚法 锦标赛选拔 渡线 可行区 约束优化 计算机科学 算法 最优化问题 操作员(生物学) 约束(计算机辅助设计) 功能(生物学) 数学优化 数学 遗传算法 几何学 人工智能 进化生物学 转录因子 生物 基因 生物化学 抑制因子 化学
作者
Kalyanmoy Deb
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:186 (2-4): 311-338 被引量:3687
标识
DOI:10.1016/s0045-7825(99)00389-8
摘要

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using genetic algorithms (GAs) or classical optimization methods, penalty function methods have been the most popular approach, because of their simplicity and ease of implementation. However, since the penalty function approach is generic and applicable to any type of constraint (linear or nonlinear), their performance is not always satisfactory. Thus, researchers have developed sophisticated penalty functions specific to the problem at hand and the search algorithm used for optimization. However, the most difficult aspect of the penalty function approach is to find appropriate penalty parameters needed to guide the search towards the constrained optimum. In this paper, GA's population-based approach and ability to make pair-wise comparison in tournament selection operator are exploited to devise a penalty function approach that does not require any penalty parameter. Careful comparisons among feasible and infeasible solutions are made so as to provide a search direction towards the feasible region. Once sufficient feasible solutions are found, a niching method (along with a controlled mutation operator) is used to maintain diversity among feasible solutions. This allows a real-parameter GA's crossover operator to continuously find better feasible solutions, gradually leading the search near the true optimum solution. GAs with this constraint handling approach have been tested on nine problems commonly used in the literature, including an engineering design problem. In all cases, the proposed approach has been able to repeatedly find solutions closer to the true optimum solution than that reported earlier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助LL采纳,获得10
刚刚
cici发布了新的文献求助10
刚刚
刚刚
Orange应助猪头采纳,获得10
1秒前
爆米花应助kevin采纳,获得30
2秒前
烟雨夕阳完成签到,获得积分10
2秒前
小二郎应助Jonas采纳,获得10
2秒前
浮游应助土豆子汁采纳,获得10
3秒前
11完成签到,获得积分10
3秒前
DrWang发布了新的文献求助10
3秒前
烟花应助悦耳成风采纳,获得10
4秒前
4秒前
Santiana完成签到,获得积分10
4秒前
赘婿应助lili采纳,获得10
4秒前
费劲来到这的Rua完成签到,获得积分10
5秒前
5秒前
6秒前
yueyue3SCI发布了新的文献求助10
6秒前
科研通AI6应助_11_采纳,获得10
7秒前
7秒前
8秒前
阿七完成签到,获得积分10
8秒前
wondor1111发布了新的文献求助10
8秒前
fisher发布了新的文献求助30
9秒前
Lily_0_o完成签到,获得积分10
9秒前
10秒前
10秒前
ccc发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助50
11秒前
董科研严完成签到,获得积分10
11秒前
执着的勒发布了新的文献求助10
12秒前
所所应助干净千青采纳,获得10
12秒前
12秒前
光亮的胡萝卜完成签到,获得积分20
13秒前
ding应助吴世勋fans采纳,获得30
14秒前
半凡完成签到,获得积分10
15秒前
FashionBoy应助橙橙采纳,获得10
15秒前
xiong完成签到,获得积分10
15秒前
16秒前
充电宝应助爱撒娇的朋友采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988111
求助须知:如何正确求助?哪些是违规求助? 4237608
关于积分的说明 13199773
捐赠科研通 4031479
什么是DOI,文献DOI怎么找? 2205584
邀请新用户注册赠送积分活动 1217059
关于科研通互助平台的介绍 1135177