An efficient constraint handling method for genetic algorithms

惩罚法 锦标赛选拔 渡线 可行区 约束优化 计算机科学 算法 最优化问题 操作员(生物学) 约束(计算机辅助设计) 功能(生物学) 数学优化 数学 遗传算法 几何学 人工智能 进化生物学 转录因子 生物 基因 生物化学 抑制因子 化学
作者
Kalyanmoy Deb
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:186 (2-4): 311-338 被引量:3687
标识
DOI:10.1016/s0045-7825(99)00389-8
摘要

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using genetic algorithms (GAs) or classical optimization methods, penalty function methods have been the most popular approach, because of their simplicity and ease of implementation. However, since the penalty function approach is generic and applicable to any type of constraint (linear or nonlinear), their performance is not always satisfactory. Thus, researchers have developed sophisticated penalty functions specific to the problem at hand and the search algorithm used for optimization. However, the most difficult aspect of the penalty function approach is to find appropriate penalty parameters needed to guide the search towards the constrained optimum. In this paper, GA's population-based approach and ability to make pair-wise comparison in tournament selection operator are exploited to devise a penalty function approach that does not require any penalty parameter. Careful comparisons among feasible and infeasible solutions are made so as to provide a search direction towards the feasible region. Once sufficient feasible solutions are found, a niching method (along with a controlled mutation operator) is used to maintain diversity among feasible solutions. This allows a real-parameter GA's crossover operator to continuously find better feasible solutions, gradually leading the search near the true optimum solution. GAs with this constraint handling approach have been tested on nine problems commonly used in the literature, including an engineering design problem. In all cases, the proposed approach has been able to repeatedly find solutions closer to the true optimum solution than that reported earlier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
FashionBoy应助夏末采纳,获得10
刚刚
1秒前
团子发布了新的文献求助10
1秒前
科研通AI6应助guangyu采纳,获得10
2秒前
传奇3应助聪明的半青采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
端庄芯发布了新的文献求助10
5秒前
6秒前
不做科研发布了新的文献求助10
6秒前
幸运鹅47完成签到,获得积分10
7秒前
夜染发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
10秒前
bonjourqiao完成签到,获得积分10
12秒前
12秒前
13秒前
清凉茶完成签到,获得积分10
14秒前
小二郎应助花生什么树了采纳,获得10
15秒前
天天快乐应助iwonder采纳,获得10
15秒前
wanci应助郑方舟采纳,获得10
16秒前
珊明治完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
司纤户羽完成签到,获得积分10
20秒前
科目三应助77采纳,获得10
20秒前
sunny完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
zz完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
司纤户羽发布了新的文献求助60
25秒前
量子星尘发布了新的文献求助10
25秒前
慕青应助Heaven采纳,获得10
25秒前
26秒前
yufeng发布了新的文献求助10
27秒前
思源应助英勇的香之采纳,获得10
28秒前
李晓彤发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304