An efficient constraint handling method for genetic algorithms

惩罚法 锦标赛选拔 渡线 可行区 约束优化 计算机科学 算法 最优化问题 操作员(生物学) 约束(计算机辅助设计) 功能(生物学) 数学优化 数学 遗传算法 几何学 人工智能 进化生物学 转录因子 生物 基因 生物化学 抑制因子 化学
作者
Kalyanmoy Deb
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:186 (2-4): 311-338 被引量:3687
标识
DOI:10.1016/s0045-7825(99)00389-8
摘要

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using genetic algorithms (GAs) or classical optimization methods, penalty function methods have been the most popular approach, because of their simplicity and ease of implementation. However, since the penalty function approach is generic and applicable to any type of constraint (linear or nonlinear), their performance is not always satisfactory. Thus, researchers have developed sophisticated penalty functions specific to the problem at hand and the search algorithm used for optimization. However, the most difficult aspect of the penalty function approach is to find appropriate penalty parameters needed to guide the search towards the constrained optimum. In this paper, GA's population-based approach and ability to make pair-wise comparison in tournament selection operator are exploited to devise a penalty function approach that does not require any penalty parameter. Careful comparisons among feasible and infeasible solutions are made so as to provide a search direction towards the feasible region. Once sufficient feasible solutions are found, a niching method (along with a controlled mutation operator) is used to maintain diversity among feasible solutions. This allows a real-parameter GA's crossover operator to continuously find better feasible solutions, gradually leading the search near the true optimum solution. GAs with this constraint handling approach have been tested on nine problems commonly used in the literature, including an engineering design problem. In all cases, the proposed approach has been able to repeatedly find solutions closer to the true optimum solution than that reported earlier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ad钙发布了新的文献求助10
刚刚
英俊的铭应助开心的渊思采纳,获得10
1秒前
revo完成签到,获得积分10
1秒前
hh发布了新的文献求助10
1秒前
ERIS完成签到,获得积分10
2秒前
2秒前
英姑应助YZQ采纳,获得10
2秒前
汉堡包应助第七个星球采纳,获得10
2秒前
逆蝶发布了新的文献求助10
4秒前
4秒前
光亮语梦完成签到 ,获得积分10
5秒前
科研通AI6应助ERIS采纳,获得10
5秒前
Shaw发布了新的文献求助10
6秒前
6秒前
斯文败类应助DDD采纳,获得10
7秒前
青瓦完成签到 ,获得积分10
8秒前
果子发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
peanuttt完成签到,获得积分10
11秒前
11秒前
悬铃木发布了新的文献求助10
12秒前
汉堡包应助22222采纳,获得10
12秒前
12秒前
聪明的寒梅完成签到 ,获得积分10
12秒前
汉堡包应助哭泣的梦琪采纳,获得10
12秒前
CipherSage应助BW打工仔采纳,获得10
13秒前
13秒前
Shaw完成签到,获得积分10
13秒前
科研通AI6应助钙离子采纳,获得10
13秒前
13秒前
peanuttt发布了新的文献求助10
13秒前
hh完成签到,获得积分10
14秒前
豆子发布了新的文献求助10
14秒前
14秒前
15秒前
CodeCraft应助cc采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589068
求助须知:如何正确求助?哪些是违规求助? 4672334
关于积分的说明 14790349
捐赠科研通 4627486
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500706
关于科研通互助平台的介绍 1468396