An efficient constraint handling method for genetic algorithms

惩罚法 锦标赛选拔 渡线 可行区 约束优化 计算机科学 算法 最优化问题 操作员(生物学) 约束(计算机辅助设计) 功能(生物学) 数学优化 数学 遗传算法 几何学 人工智能 进化生物学 转录因子 生物 基因 生物化学 抑制因子 化学
作者
Kalyanmoy Deb
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:186 (2-4): 311-338 被引量:3687
标识
DOI:10.1016/s0045-7825(99)00389-8
摘要

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using genetic algorithms (GAs) or classical optimization methods, penalty function methods have been the most popular approach, because of their simplicity and ease of implementation. However, since the penalty function approach is generic and applicable to any type of constraint (linear or nonlinear), their performance is not always satisfactory. Thus, researchers have developed sophisticated penalty functions specific to the problem at hand and the search algorithm used for optimization. However, the most difficult aspect of the penalty function approach is to find appropriate penalty parameters needed to guide the search towards the constrained optimum. In this paper, GA's population-based approach and ability to make pair-wise comparison in tournament selection operator are exploited to devise a penalty function approach that does not require any penalty parameter. Careful comparisons among feasible and infeasible solutions are made so as to provide a search direction towards the feasible region. Once sufficient feasible solutions are found, a niching method (along with a controlled mutation operator) is used to maintain diversity among feasible solutions. This allows a real-parameter GA's crossover operator to continuously find better feasible solutions, gradually leading the search near the true optimum solution. GAs with this constraint handling approach have been tested on nine problems commonly used in the literature, including an engineering design problem. In all cases, the proposed approach has been able to repeatedly find solutions closer to the true optimum solution than that reported earlier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助正直发箍采纳,获得10
刚刚
1點點cui发布了新的文献求助10
刚刚
可乐完成签到,获得积分10
刚刚
1秒前
1秒前
归零发布了新的文献求助10
1秒前
zhao100623发布了新的文献求助10
1秒前
gcq完成签到,获得积分10
1秒前
1秒前
科研通AI6应助飘逸怜菡采纳,获得10
1秒前
深情安青应助HHHHH采纳,获得10
1秒前
彩色鹏煊完成签到,获得积分20
1秒前
orixero应助liuxiaonao采纳,获得10
2秒前
2秒前
爆米花应助天真玲采纳,获得10
3秒前
zlt发布了新的文献求助10
3秒前
draw9708发布了新的文献求助10
3秒前
沙鸭博士发布了新的文献求助10
3秒前
4秒前
CipherSage应助年轻的钥匙采纳,获得10
4秒前
郑大甜完成签到,获得积分10
4秒前
卜雪旋完成签到,获得积分10
4秒前
4秒前
栗子发布了新的文献求助10
5秒前
老八的嘴发布了新的文献求助100
5秒前
5秒前
xiao发布了新的文献求助10
6秒前
科研通AI6应助四季采纳,获得10
7秒前
7秒前
QBB完成签到,获得积分20
8秒前
jjjeneny发布了新的文献求助10
8秒前
通讯录三号完成签到 ,获得积分10
8秒前
9秒前
等待依琴发布了新的文献求助10
9秒前
zhao100623完成签到 ,获得积分10
9秒前
郑大甜发布了新的文献求助10
9秒前
qiao发布了新的社区帖子
9秒前
Joejoekey发布了新的文献求助10
9秒前
Rylee完成签到,获得积分10
11秒前
彪壮的小五完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341080
求助须知:如何正确求助?哪些是违规求助? 4477385
关于积分的说明 13935147
捐赠科研通 4373423
什么是DOI,文献DOI怎么找? 2402988
邀请新用户注册赠送积分活动 1395878
关于科研通互助平台的介绍 1367862