Guidelines to Classify Subject Groups in Sport-Science Research

术语 主题(文档) 工作量 数学 自行车 统计 计算机科学 语言学 地理 哲学 图书馆学 操作系统 考古
作者
Kevin De Pauw,Bart Roelands,Stephen S. Cheung,Bas de Geus,Gerard Rietjens,Romain Meeusen
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:8 (2): 111-122 被引量:560
标识
DOI:10.1123/ijspp.8.2.111
摘要

The aim of this systematic literature review was to outline the various preexperimental maximal cycle-test protocols, terminology, and performance indicators currently used to classify subject groups in sport-science research and to construct a classification system for cycling-related research.A database of 130 subject-group descriptions contains information on preexperimental maximal cycle-protocol designs, terminology of the subject groups, biometrical and physiological data, cycling experience, and parameters. Kolmogorov-Smirnov test, 1-way ANOVA, post hoc Bonferroni (P < .05), and trend lines were calculated on height, body mass, relative and absolute maximal oxygen consumption (VO(2max)), and peak power output (PPO).During preexperimental testing, an initial workload of 100 W and a workload increase of 25 W are most frequently used. Three-minute stages provide the most reliable and valid measures of endurance performance. After obtaining data on a subject group, researchers apply various terms to define the group. To solve this complexity, the authors introduced the neutral term performance levels 1 to 5, representing untrained, recreationally trained, trained, well-trained, and professional subject groups, respectively. The most cited parameter in literature to define subject groups is relative VO(2max), and therefore no overlap between different performance levels may occur for this principal parameter. Another significant cycling parameter is the absolute PPO. The description of additional physiological information and current and past cycling data is advised.This review clearly shows the need to standardize the procedure for classifying subject groups. Recommendations are formulated concerning preexperimental testing, terminology, and performance indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来日方长发布了新的文献求助20
刚刚
时间尘埃完成签到,获得积分10
2秒前
2秒前
3秒前
sfsfes完成签到 ,获得积分10
3秒前
123123完成签到 ,获得积分10
4秒前
努力发布了新的文献求助10
5秒前
无限行之完成签到,获得积分10
6秒前
hilm应助CPELQY采纳,获得10
7秒前
很难过完成签到,获得积分10
7秒前
ding应助柠柠采纳,获得10
9秒前
会飞的鲤鱼完成签到,获得积分10
9秒前
10秒前
朴素完成签到 ,获得积分10
12秒前
您疼肚完成签到,获得积分20
13秒前
hangover完成签到,获得积分10
14秒前
Lucas应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得20
16秒前
无花果应助曾哥帅采纳,获得10
16秒前
Frank应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
Frank应助科研通管家采纳,获得10
16秒前
DE应助科研通管家采纳,获得10
16秒前
Frank应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
16秒前
matibaobaozhu应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
Frank应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460871
求助须知:如何正确求助?哪些是违规求助? 4565911
关于积分的说明 14302012
捐赠科研通 4491410
什么是DOI,文献DOI怎么找? 2460302
邀请新用户注册赠送积分活动 1449679
关于科研通互助平台的介绍 1425492