Guidelines to Classify Subject Groups in Sport-Science Research

术语 主题(文档) 工作量 数学 自行车 统计 计算机科学 语言学 地理 哲学 图书馆学 操作系统 考古
作者
Kevin De Pauw,Bart Roelands,Stephen S. Cheung,Bas de Geus,Gerard Rietjens,Romain Meeusen
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:8 (2): 111-122 被引量:560
标识
DOI:10.1123/ijspp.8.2.111
摘要

The aim of this systematic literature review was to outline the various preexperimental maximal cycle-test protocols, terminology, and performance indicators currently used to classify subject groups in sport-science research and to construct a classification system for cycling-related research.A database of 130 subject-group descriptions contains information on preexperimental maximal cycle-protocol designs, terminology of the subject groups, biometrical and physiological data, cycling experience, and parameters. Kolmogorov-Smirnov test, 1-way ANOVA, post hoc Bonferroni (P < .05), and trend lines were calculated on height, body mass, relative and absolute maximal oxygen consumption (VO(2max)), and peak power output (PPO).During preexperimental testing, an initial workload of 100 W and a workload increase of 25 W are most frequently used. Three-minute stages provide the most reliable and valid measures of endurance performance. After obtaining data on a subject group, researchers apply various terms to define the group. To solve this complexity, the authors introduced the neutral term performance levels 1 to 5, representing untrained, recreationally trained, trained, well-trained, and professional subject groups, respectively. The most cited parameter in literature to define subject groups is relative VO(2max), and therefore no overlap between different performance levels may occur for this principal parameter. Another significant cycling parameter is the absolute PPO. The description of additional physiological information and current and past cycling data is advised.This review clearly shows the need to standardize the procedure for classifying subject groups. Recommendations are formulated concerning preexperimental testing, terminology, and performance indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dingminfeng完成签到 ,获得积分10
1秒前
1秒前
yangzhudi2333发布了新的文献求助10
2秒前
马嘉祺完成签到 ,获得积分10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
5秒前
嘉欣发布了新的文献求助10
5秒前
6秒前
彩色石头发布了新的文献求助10
6秒前
6秒前
行走江湖的特美投完成签到,获得积分0
6秒前
6秒前
今后应助yangzhudi2333采纳,获得10
8秒前
铁铁发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
打打应助yangwenjie1212采纳,获得10
10秒前
哈哈哈完成签到,获得积分10
11秒前
研友_VZG7GZ应助嘉欣采纳,获得10
11秒前
咚咚发布了新的文献求助10
12秒前
花花花花发布了新的文献求助10
12秒前
科研通AI6应助qiang采纳,获得10
12秒前
慕青应助AN采纳,获得10
12秒前
NexusExplorer应助彩色石头采纳,获得10
13秒前
善学以致用应助彩色石头采纳,获得10
13秒前
YMM完成签到,获得积分10
13秒前
打打应助彩色石头采纳,获得10
13秒前
西米发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
17秒前
15987342672完成签到 ,获得积分10
17秒前
chipmunk完成签到,获得积分10
17秒前
科研小能手完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430775
求助须知:如何正确求助?哪些是违规求助? 4543849
关于积分的说明 14189575
捐赠科研通 4462258
什么是DOI,文献DOI怎么找? 2446493
邀请新用户注册赠送积分活动 1437927
关于科研通互助平台的介绍 1414544