摘要
SmallVolume 9, Issue 17 p. 2838-2843 Communication Highly Ordered Hollow Oxide Nanostructures: The Kirkendall Effect at the Nanoscale Abdel-Aziz El Mel, Corresponding Author Abdel-Aziz El Mel [email protected] Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, 23 Place du Parc, B-7000 Mons, BelgiumChimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium.Search for more papers by this authorMarie Buffière, Marie Buffière Department of Electrical Engineering, KU Leuven, KastteelparkArenberg 10, B-3001 Heverlee, Belgium IMEC Kapeldreef 75, B-3001 Heverlee, BelgiumSearch for more papers by this authorPierre-Yves Tessier, Pierre-Yves Tessier Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, UMR 6502, 2 rue de la, Houssinière B. P. 32229, 44322 Nantes cedex 3, FranceSearch for more papers by this authorStephanos Konstantinidis, Stephanos Konstantinidis Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, 23 Place du Parc, B-7000 Mons, BelgiumSearch for more papers by this authorWei Xu, Wei Xu Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USASearch for more papers by this authorKe Du, Ke Du Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USASearch for more papers by this authorIshan Wathuthanthri, Ishan Wathuthanthri Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USASearch for more papers by this authorChang-Hwan Choi, Chang-Hwan Choi Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USASearch for more papers by this authorCarla Bittencourt, Carla Bittencourt Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, 23 Place du Parc, B-7000 Mons, BelgiumSearch for more papers by this authorRony Snyders, Rony Snyders Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium Materia Nova Research Center, 1 Avenue Nicolas Copernic, B-7000 Mons, BelgiumSearch for more papers by this author Abdel-Aziz El Mel, Corresponding Author Abdel-Aziz El Mel [email protected] Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, 23 Place du Parc, B-7000 Mons, BelgiumChimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium.Search for more papers by this authorMarie Buffière, Marie Buffière Department of Electrical Engineering, KU Leuven, KastteelparkArenberg 10, B-3001 Heverlee, Belgium IMEC Kapeldreef 75, B-3001 Heverlee, BelgiumSearch for more papers by this authorPierre-Yves Tessier, Pierre-Yves Tessier Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, UMR 6502, 2 rue de la, Houssinière B. P. 32229, 44322 Nantes cedex 3, FranceSearch for more papers by this authorStephanos Konstantinidis, Stephanos Konstantinidis Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, 23 Place du Parc, B-7000 Mons, BelgiumSearch for more papers by this authorWei Xu, Wei Xu Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USASearch for more papers by this authorKe Du, Ke Du Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USASearch for more papers by this authorIshan Wathuthanthri, Ishan Wathuthanthri Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USASearch for more papers by this authorChang-Hwan Choi, Chang-Hwan Choi Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USASearch for more papers by this authorCarla Bittencourt, Carla Bittencourt Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, 23 Place du Parc, B-7000 Mons, BelgiumSearch for more papers by this authorRony Snyders, Rony Snyders Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium Materia Nova Research Center, 1 Avenue Nicolas Copernic, B-7000 Mons, BelgiumSearch for more papers by this author First published: 26 February 2013 https://doi.org/10.1002/smll.201202824Citations: 62Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Highly ordered ultra-long oxide nanotubes are fabricated by a simple two-step strategy involving the growth of copper nanowires on nanopatterned template substrates by magnetron sputtering, followed by thermal annealing in air. The formation of such tubular nanostructures is explained according to the nanoscale Kirkendall effect. The concept of this new fabrication route is also extendable to create periodic zero-dimensional hollow nanostructures. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description smll_201202824_sm_suppl.pdf346.2 KB suppl Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 S. Iijima, Nature 1991, 354, 56. 2 a) Y. Sun, B. Mayers, Y. Xia, Adv. Mater. 2003, 15, 641; b) Y. Sun, Y. Xia, Adv. Mater. 2004, 16, 264. 3 a) H. J. Fan, U. Gösele, M. Zacharias, Small 2007, 3, 1660; b) H. J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, U. Gösele, Nano Lett. 2007, 7, 993. 4 a) X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater. 2008, 20, 3987; b) Y. Zhao, L. Jiang, Adv. Mater. 2009, 21, 3621; c) G. D. Moon, S. Ko, Y. Min, J. Zeng, Y. Xia, U. Jeong, Nano Today 2011, 6, 186. 5 E. O. Kirkendall, Trans. AIME 1942, 147, 104. 6 Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science 2004, 304, 711. 7 H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Gosele, Nat. Mater. 2006, 5, 627. 8 R. Nakamura, D. Tokozakura, H. Nakajima, J. G. Lee, H. Mori, J. Appl. Phys. 2007, 101, 074303. 9 R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto, H. Nakajima, Acta Mater. 2009, 57, 5046. 10 a) R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, H. Nakajima, Mater. Lett. 2007, 61, 1060; b) J. G. Railsback, A. C. Johnston-Peck, J. Wang, J. B. Tracy, ACS Nano 2010, 4, 1913. 11 R. Nakamura, J. G. Lee, H. Mori, H. Nakajima, Philos. Mag. 2008, 88, 257. 12 R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto, H. Nakajima, Acta Mater. 2009, 57, 4261. 13 Y. Ren, W. K. Chim, S. Y. Chiam, J. Q. Huang, C. Pi, J. S. Pan, Adv. Funct. Mater. 2010, 20, 3336. 14 Y. Ren, S. Y. Chiam, W. K. Chim, Nanotechnology 2011, 22, 235606. 15 Y. Yang, L. Liu, F. Güder, A. Berger, R. Scholz, O. Albrecht, M. Zacharias, Angew. Chem. Int. Ed. 2011, 50, 10855. 16 a) J. S. Chen, C. M. Li, W. W. Zhou, Q. Y. Yan, L. A. Archer, X. W. Lou, Nanoscale 2009, 1, 280; b) K. Raidongia, C. N. R. Rao, J. Phys. Chem. C 2008, 112, 13366; c) F. Güder, Y. Yang, S. Goetze, A. Berger, N. Ramgir, D. Hesse, M. Zacharias, Small 2010, 6, 1603. 17 J. Gao, B. Zhang, X. Zhang, B. Xu, Angew. Chem. 2006, 45, 1220. 18 M. H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, J. Cho, Angew. Chem. 2011, 50, 9647. 19 Q. Li, R. M. Penner, Nano Lett. 2005, 5, 1720. 20 E. González, J. Arbiol, V. F. Puntes, Science 2011, 334, 1377. 21 S. Hamaguchi, S. M. Rossnagel, J. Vac. Sci. Technol. B 1995, 13, 183. 22 A. A. El Mel, E. Gautron, C. H. Choi, B. Angleraud, A. Granier, P. Y. Tessier, Nanotechnology 2010, 21, 435603. 23 N. Cabrera, N. F. Mott, Rep. Prog. Phys. 1949, 12, 163. 24 D. B. Butrymowicz, J. R. Manning, M. E. Read, J. Phys. Chem. Ref. Data 1973, 2, 643. 25 G. Benchabane, Z. Boumerzoug, I. Thibon, T. Gloriant, Mater. Characterization 2008, 59, 1425. 26 J. H. An, P. J. Ferreira, Appl. Phys. Lett. 2006, 89, 151919. 27 T. Oyama, N. Wada, H. Takagi, Phys. Rev. B 2010, 82, 134107. 28 I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Technol. A 2003, 21, S117. 29 S. Choopun, N. Hongsith, E. Wongrat, Metal-Oxide Nanowires by Thermal Oxidation Reaction Technique, Nanowires (Ed. P. Prete), InTech, Croatia 2010. 30 C.-H. Choi, C. J. Kim, Nanotechnology 2006, 17, 5326. 31 a) I. Wathuthanthri, W. Mao, C.-H. Choi, Opt. Lett. 2011, 36, 1593; b) I. Wathuthanthri, Y. Liu, K. Du, W. Xu, C.-H. Choi, Adv. Funct. Mater. 2013, 23, 608; c) W. Mao, I. Wathuthanthri, C. H. Choi, Opt. Lett. 2011, 36, 3176. Citing Literature Volume9, Issue17September 9, 2013Pages 2838-2843 ReferencesRelatedInformation