Factors Affecting the Stability and Performance of Ionic Liquid-Based Planar Transient Photodetectors

平面的 瞬态(计算机编程) 光电探测器 离子键合 材料科学 离子液体 理论(学习稳定性) 化学工程 光电子学 化学 离子 计算机科学 工程类 有机化学 催化作用 计算机图形学(图像) 机器学习 操作系统
作者
Simon Dalgleish,Louisa Reissig,Laigui Hu,Michio M. Matsushita,Yuki Sudo,Kunio Awaga
出处
期刊:Langmuir [American Chemical Society]
卷期号:31 (18): 5235-5243 被引量:13
标识
DOI:10.1021/la504972q
摘要

A novel planar architecture has been developed for the study of photodetectors utilizing the transient photocurrent response induced by a metal/insulator/semiconductor/metal (MISM) structured device, where the insulator is an ionic liquid (IL-MISM). Using vanadyl 2,3-naphthalocyanine, which absorbs in the communications-relevant near-infrared wavelength region (λmax,film ≈ 850 nm), in conjunction with C60 as a bulk heterojunction, the high capacitance of the formed electric double layers at the ionic liquid interfaces yields high charge separation efficiency within the semiconductor layer, and the minimal potential drop in the bulk ionic liquid allows the electrodes to be offset by distances of over 7 mm. Furthermore, the decrease in operational speed with increased electrode separation is beneficial for a clear modeling of the waveform of the photocurrent signal, free from the influence of measurement circuitry. Despite the use of a molecular semiconductor as the active layer in conjunction with a liquid insulating layer, devices with a stability of several days could be achieved, and the operational stability of such devices was shown to be dependent solely on the solubility of the active layer in the ionic liquid, even under atmospheric conditions. Furthermore, the greatly simplified device construction process, which does not rely on transparent electrode materials or direct electrode deposition, provides a highly reproducible platform for the study of the electronic processes within IL-MISM detectors that is largely free from architectural constraints.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助Bibiboom采纳,获得20
1秒前
1秒前
zxx123456789发布了新的文献求助10
1秒前
Jonathan发布了新的文献求助10
2秒前
科研通AI5应助学习的小崽采纳,获得10
2秒前
3秒前
3秒前
4秒前
xu2024完成签到,获得积分10
4秒前
4秒前
Hello应助NiceSunnyDay采纳,获得10
4秒前
enjoy完成签到 ,获得积分10
4秒前
dlutli发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
小猫完成签到,获得积分10
7秒前
科研通AI5应助青柏采纳,获得10
7秒前
CodeCraft应助就是爱问采纳,获得10
7秒前
Owen应助激昂的背包采纳,获得10
7秒前
8秒前
9秒前
所所应助Catalysis123采纳,获得10
9秒前
YINYIN发布了新的文献求助10
10秒前
10秒前
11秒前
热情学哥发布了新的文献求助10
12秒前
陈慧彬完成签到,获得积分10
12秒前
咪芽发布了新的文献求助30
12秒前
12秒前
13秒前
14秒前
14秒前
研友_VZG7GZ应助Hyccccc采纳,获得10
14秒前
Tony发布了新的文献求助10
14秒前
15秒前
雨碎寒江发布了新的文献求助30
15秒前
hjy完成签到,获得积分10
17秒前
卫小铁发布了新的文献求助10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490684
求助须知:如何正确求助?哪些是违规求助? 3077465
关于积分的说明 9148997
捐赠科研通 2769686
什么是DOI,文献DOI怎么找? 1519873
邀请新用户注册赠送积分活动 704375
科研通“疑难数据库(出版商)”最低求助积分说明 702135