硫化铜
铜
硫化物
硫化锌
辉铜矿
外延
材料科学
相(物质)
纳米晶
固溶体
纤锌矿晶体结构
硫族元素
无机化学
结晶学
化学工程
化学
图层(电子)
纳米技术
锌
黄铜矿
冶金
有机化学
工程类
作者
Don‐Hyung Ha,Andrew H. Caldwell,Matthew J. Ward,Shreyas Honrao,Kiran Mathew,Robert Hovden,Margaret K. A. Koker,David A. Muller,Richard G. Hennig,Richard D. Robinson
出处
期刊:Nano Letters
[American Chemical Society]
日期:2014-10-22
卷期号:14 (12): 7090-7099
被引量:158
摘要
We demonstrate dual interface formation in nanocrystals (NCs) through cation exchange, creating epitaxial heterostructures within spherical NCs. The thickness of the inner-disk layer can be tuned to form two-dimensional (2D), single atomic layers (<1 nm). During the cation exchange reaction from copper sulfide to zinc sulfide (ZnS), we observe a solid–solid phase transformation of the copper sulfide phase in heterostructured NCs. As the cation exchange reaction is initiated, Cu ions replaced by Zn ions at the interfaces are accommodated in intrinsic Cu vacancy sites present in the initial roxbyite (Cu1.81S) phase of copper sulfide, inducing a full phase transition to djurleite (Cu1.94S)/low chalcocite (Cu2S), a more thermodynamically stable phase than roxbyite. As the reaction proceeds and reduces the size of the copper sulfide layer, the epitaxial strain at the interfaces between copper sulfide and ZnS increases and is maximized for a copper sulfide disk ∼5 nm thick. To minimize this strain energy, a second phase transformation occurs back to the roxbyite phase, which shares a similar sulfur sublattice to wurtzite ZnS. The observation of a solid–solid phase transformation in our unique heterostructured NCs provides a new pathway to control desired phases and an insight into the influence of cation exchange on nanoscale phase transitions in heterostructured materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI