Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning

断层(地质) 人工智能 深度学习 计算机科学 编码器 学习迁移 钥匙(锁) 领域(数学分析) 机器学习 工程类 数据挖掘 模式识别(心理学) 地质学 数学分析 操作系统 计算机安全 地震学 数学
作者
Min Xia,Haidong Shao,Darren L. Williams,Siliang Lu,Lei Shu,Clarence W. de Silva
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:215: 107938-107938 被引量:229
标识
DOI:10.1016/j.ress.2021.107938
摘要

Digital twin (DT) is emerging as a key technology for smart manufacturing. The high fidelity DT model of the physical assets can produce system performance data that is close to reality, which provides remarkable opportunities for machine fault diagnosis when the measured fault condition data are insufficient. This paper presents an intelligent fault diagnosis framework for machinery based on DT and deep transfer learning. First, the DT model of the machine is built by establishing the simulation model and with further updating through continuously measured data from the physical asset. Second, all important machine conditions can be simulated from the built DT. Third, a new-type deep structure based on novel sparse de-noising auto-encoder (NSDAE) is developed and pre-trained with condition data from the source domain, as generated from the DT. Then, to achieve accurate machine fault diagnosis with possible variations in working conditions and system characteristics, the pre-trained NSDAE is fine-tuned using parameter transfer with only one sample from the target domain. The presented method is validated through a case study of triplex pump fault diagnosis. The experimental results demonstrate that the proposed method achieves intelligent fault diagnosis with a limited amount of measured data and outperforms other state-of-the-art data-driven methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十四完成签到 ,获得积分10
1秒前
2秒前
NexusExplorer应助白马非马采纳,获得10
3秒前
脆脆鲨鱼完成签到,获得积分10
4秒前
4秒前
8R60d8应助洁净的钢铁侠采纳,获得20
4秒前
8R60d8应助洁净的钢铁侠采纳,获得10
4秒前
yd发布了新的文献求助20
5秒前
英姑应助安详忆梅采纳,获得10
6秒前
天天快乐应助研友_shuang采纳,获得10
8秒前
RC_Wang发布了新的文献求助10
9秒前
迟到虞姬发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
孟古完成签到,获得积分10
11秒前
Dravia应助闵卷采纳,获得10
12秒前
SciGPT应助笑点低的丹烟采纳,获得10
13秒前
13秒前
勤劳冰烟应助科研通管家采纳,获得10
13秒前
13秒前
所所应助科研通管家采纳,获得10
14秒前
勤劳冰烟应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
15秒前
李宫俊发布了新的文献求助10
15秒前
nothing完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
18秒前
18秒前
nothing发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303