亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning

断层(地质) 人工智能 深度学习 计算机科学 编码器 学习迁移 钥匙(锁) 领域(数学分析) 机器学习 工程类 数据挖掘 模式识别(心理学) 地质学 数学分析 操作系统 计算机安全 地震学 数学
作者
Min Xia,Haidong Shao,Darren L. Williams,Siliang Lu,Lei Shu,Clarence W. de Silva
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:215: 107938-107938 被引量:283
标识
DOI:10.1016/j.ress.2021.107938
摘要

Digital twin (DT) is emerging as a key technology for smart manufacturing. The high fidelity DT model of the physical assets can produce system performance data that is close to reality, which provides remarkable opportunities for machine fault diagnosis when the measured fault condition data are insufficient. This paper presents an intelligent fault diagnosis framework for machinery based on DT and deep transfer learning. First, the DT model of the machine is built by establishing the simulation model and with further updating through continuously measured data from the physical asset. Second, all important machine conditions can be simulated from the built DT. Third, a new-type deep structure based on novel sparse de-noising auto-encoder (NSDAE) is developed and pre-trained with condition data from the source domain, as generated from the DT. Then, to achieve accurate machine fault diagnosis with possible variations in working conditions and system characteristics, the pre-trained NSDAE is fine-tuned using parameter transfer with only one sample from the target domain. The presented method is validated through a case study of triplex pump fault diagnosis. The experimental results demonstrate that the proposed method achieves intelligent fault diagnosis with a limited amount of measured data and outperforms other state-of-the-art data-driven methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到 ,获得积分10
2秒前
20秒前
23秒前
zyz发布了新的文献求助20
28秒前
SDNUDRUG发布了新的文献求助10
38秒前
48秒前
SDNUDRUG完成签到,获得积分10
49秒前
大模型应助隋嫣然采纳,获得10
52秒前
潦草小狗完成签到 ,获得积分10
59秒前
tutu完成签到,获得积分10
1分钟前
1分钟前
英俊的铭应助zyz采纳,获得10
1分钟前
鲁路修完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
PLEDGE完成签到,获得积分10
1分钟前
chuan发布了新的文献求助10
1分钟前
chuan完成签到,获得积分10
1分钟前
1分钟前
长街完成签到,获得积分10
1分钟前
长街发布了新的文献求助10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
PengDai发布了新的文献求助200
2分钟前
2分钟前
YOGA1115发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
CodeCraft应助PengDai采纳,获得10
3分钟前
3分钟前
Meya发布了新的文献求助10
3分钟前
Meya完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031321
求助须知:如何正确求助?哪些是违规求助? 4266008
关于积分的说明 13298415
捐赠科研通 4075173
什么是DOI,文献DOI怎么找? 2228903
邀请新用户注册赠送积分活动 1237490
关于科研通互助平台的介绍 1162295