Semi-supervised learning approach for malicious URL detection via adversarial learning1

计算机科学 对抗制 机器学习 人工智能 支持向量机 资源(消歧) 生成对抗网络 数据挖掘 深度学习 监督学习 人工神经网络 计算机网络
作者
Jie Ling,Su Xiong,Yu Luo
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:41 (2): 3083-3092
标识
DOI:10.3233/jifs-210212
摘要

Uniform Resource Location (URL) is the network unified resource location system that specifies the location and access method of resources on the Internet. At present, malicious URL has become one of the main means of network attack. How to detect malicious URL timely and accurately has become an engaging research topic. The recent proposed deep learning-based detection models can achieve high accuracy in simulations, but several problems are exposed when they are used in real applications. These models need a balanced labeled dataset for training, while collecting large numbers of the latest labeled URL samples is difficult due to the rapid generation of URL in the real application environment. In addition, in most randomly collected datasets, the number of benign URL samples and malicious URL samples is extremely unbalanced, as malicious URL samples are often rare. This paper proposes a semi-supervised learning malicious URL detection method based on generative adversarial network (GAN) to solve the above two problems. By utilizing the unlabeled URLs for model training in a semi-supervised way, the requirement of large numbers of labeled samples is weakened. And the imbalance problem can be relieved with the synthetic malicious URL generated by adversarial learning. Experimental results show that the proposed method outperforms the classic SVM and LSTM based methods. Specially, the proposed method can obtain high accuracy with insufficient labeled samples and unbalanced dataset. e.g., the proposed method can achieve 87.8% /91.9% detection accuracy when the number of labeled samples is reduced to 20% /40% of that of conventional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bodhi完成签到,获得积分10
刚刚
含蓄觅山完成签到,获得积分10
刚刚
FashionBoy应助喻初原采纳,获得10
刚刚
qin完成签到,获得积分10
1秒前
今后应助sunwending采纳,获得10
1秒前
1秒前
xy小侠女完成签到,获得积分10
2秒前
yy发布了新的文献求助10
2秒前
REBECCA完成签到 ,获得积分10
2秒前
大意的茈完成签到 ,获得积分10
2秒前
雨雨发布了新的文献求助30
2秒前
卢雅妮完成签到 ,获得积分10
2秒前
科目三应助小小小小鸟采纳,获得10
3秒前
酷炫黄蜂发布了新的文献求助10
3秒前
熊大完成签到,获得积分10
3秒前
共享精神应助树L采纳,获得10
3秒前
xiao礼完成签到,获得积分10
4秒前
4秒前
含蓄觅山发布了新的文献求助10
4秒前
高兴断秋发布了新的文献求助10
4秒前
可爱的函函应助刘吉瀚采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
qin发布了新的文献求助30
5秒前
小迷糊完成签到,获得积分10
5秒前
yingzaifeixiang完成签到,获得积分10
5秒前
ding应助机智的阿振采纳,获得10
5秒前
阿龙发布了新的文献求助10
5秒前
6秒前
6秒前
majf发布了新的文献求助10
6秒前
ExtroGod发布了新的文献求助10
7秒前
冷静灵竹完成签到,获得积分10
7秒前
蓝天发布了新的文献求助10
7秒前
格子完成签到,获得积分10
7秒前
8秒前
陈晓迪1992完成签到 ,获得积分20
8秒前
JeromineJade完成签到,获得积分10
9秒前
为神武完成签到,获得积分10
9秒前
糖醋哈密瓜完成签到,获得积分10
10秒前
竹筏过海应助HR112采纳,获得30
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197