Semi-supervised learning approach for malicious URL detection via adversarial learning1

计算机科学 对抗制 机器学习 人工智能 支持向量机 资源(消歧) 生成对抗网络 数据挖掘 深度学习 监督学习 人工神经网络 计算机网络
作者
Jie Ling,Su Xiong,Yu Luo
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:41 (2): 3083-3092
标识
DOI:10.3233/jifs-210212
摘要

Uniform Resource Location (URL) is the network unified resource location system that specifies the location and access method of resources on the Internet. At present, malicious URL has become one of the main means of network attack. How to detect malicious URL timely and accurately has become an engaging research topic. The recent proposed deep learning-based detection models can achieve high accuracy in simulations, but several problems are exposed when they are used in real applications. These models need a balanced labeled dataset for training, while collecting large numbers of the latest labeled URL samples is difficult due to the rapid generation of URL in the real application environment. In addition, in most randomly collected datasets, the number of benign URL samples and malicious URL samples is extremely unbalanced, as malicious URL samples are often rare. This paper proposes a semi-supervised learning malicious URL detection method based on generative adversarial network (GAN) to solve the above two problems. By utilizing the unlabeled URLs for model training in a semi-supervised way, the requirement of large numbers of labeled samples is weakened. And the imbalance problem can be relieved with the synthetic malicious URL generated by adversarial learning. Experimental results show that the proposed method outperforms the classic SVM and LSTM based methods. Specially, the proposed method can obtain high accuracy with insufficient labeled samples and unbalanced dataset. e.g., the proposed method can achieve 87.8% /91.9% detection accuracy when the number of labeled samples is reduced to 20% /40% of that of conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjy完成签到 ,获得积分10
刚刚
充电宝应助沙河口大长硬采纳,获得10
刚刚
隐形曼青应助Gmhoo_采纳,获得10
刚刚
lxdx发布了新的文献求助10
1秒前
田様应助哼哼HA嘿采纳,获得10
1秒前
见澈发布了新的文献求助10
1秒前
崔宏玺发布了新的文献求助10
1秒前
2秒前
2秒前
Bingcai完成签到,获得积分10
2秒前
彭于晏应助zzd采纳,获得10
2秒前
畅快凝丹完成签到 ,获得积分10
3秒前
程蒽发布了新的文献求助10
3秒前
liuting完成签到,获得积分20
4秒前
Mrshi发布了新的文献求助10
4秒前
负责的皮卡丘完成签到,获得积分10
5秒前
打打应助小鲸鱼采纳,获得10
5秒前
orixero应助liao采纳,获得10
5秒前
科研通AI5应助777采纳,获得10
6秒前
6秒前
6秒前
深情安青应助见澈采纳,获得10
7秒前
吴Sehun发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
NaiZeMu发布了新的文献求助10
10秒前
碳纤维刷完成签到,获得积分10
11秒前
11秒前
11秒前
Avery发布了新的文献求助10
11秒前
Lynn发布了新的文献求助10
11秒前
见澈完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
Mrshi完成签到,获得积分10
13秒前
泉眼发布了新的文献求助10
13秒前
清图发布了新的文献求助10
14秒前
WYCheng1发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004238
求助须知:如何正确求助?哪些是违规求助? 4248464
关于积分的说明 13237041
捐赠科研通 4047786
什么是DOI,文献DOI怎么找? 2214478
邀请新用户注册赠送积分活动 1224518
关于科研通互助平台的介绍 1144955