已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semi-supervised learning approach for malicious URL detection via adversarial learning1

计算机科学 对抗制 机器学习 人工智能 支持向量机 资源(消歧) 生成对抗网络 数据挖掘 深度学习 监督学习 人工神经网络 计算机网络
作者
Jie Ling,Su Xiong,Yu Luo
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:41 (2): 3083-3092
标识
DOI:10.3233/jifs-210212
摘要

Uniform Resource Location (URL) is the network unified resource location system that specifies the location and access method of resources on the Internet. At present, malicious URL has become one of the main means of network attack. How to detect malicious URL timely and accurately has become an engaging research topic. The recent proposed deep learning-based detection models can achieve high accuracy in simulations, but several problems are exposed when they are used in real applications. These models need a balanced labeled dataset for training, while collecting large numbers of the latest labeled URL samples is difficult due to the rapid generation of URL in the real application environment. In addition, in most randomly collected datasets, the number of benign URL samples and malicious URL samples is extremely unbalanced, as malicious URL samples are often rare. This paper proposes a semi-supervised learning malicious URL detection method based on generative adversarial network (GAN) to solve the above two problems. By utilizing the unlabeled URLs for model training in a semi-supervised way, the requirement of large numbers of labeled samples is weakened. And the imbalance problem can be relieved with the synthetic malicious URL generated by adversarial learning. Experimental results show that the proposed method outperforms the classic SVM and LSTM based methods. Specially, the proposed method can obtain high accuracy with insufficient labeled samples and unbalanced dataset. e.g., the proposed method can achieve 87.8% /91.9% detection accuracy when the number of labeled samples is reduced to 20% /40% of that of conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助dongdong采纳,获得10
刚刚
两袖清风完成签到 ,获得积分10
2秒前
陶醉紫菜发布了新的文献求助10
2秒前
Hermen发布了新的文献求助10
3秒前
Zero完成签到 ,获得积分10
3秒前
4秒前
LiuXiaocui发布了新的文献求助10
4秒前
5秒前
7秒前
7秒前
难得心亮发布了新的文献求助30
11秒前
11秒前
可爱的函函应助温暖采纳,获得10
14秒前
隐形曼青应助shuhaha采纳,获得10
15秒前
未夕晴完成签到,获得积分10
15秒前
完美世界应助未夕晴采纳,获得10
19秒前
20秒前
田様应助WMT采纳,获得10
20秒前
21秒前
酒渡完成签到,获得积分10
21秒前
22秒前
AJ完成签到 ,获得积分10
22秒前
siri应助Ni采纳,获得10
23秒前
晨晨完成签到 ,获得积分10
24秒前
唉呀完成签到,获得积分20
24秒前
科研通AI2S应助橙子采纳,获得10
24秒前
孔难破发布了新的文献求助10
25秒前
苻安筠发布了新的文献求助20
25秒前
CipherSage应助leo7采纳,获得10
25秒前
花笙完成签到,获得积分10
26秒前
遇见发布了新的文献求助10
27秒前
爱咋咋地完成签到 ,获得积分10
27秒前
28秒前
31秒前
龙骑士25完成签到 ,获得积分10
32秒前
飞乐扣完成签到 ,获得积分10
32秒前
shuhaha发布了新的文献求助10
36秒前
gkads给女爰舍予的求助进行了留言
39秒前
40秒前
枫行发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655