亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised learning approach for malicious URL detection via adversarial learning1

计算机科学 对抗制 机器学习 人工智能 支持向量机 资源(消歧) 生成对抗网络 数据挖掘 深度学习 监督学习 人工神经网络 计算机网络
作者
Jie Ling,Su Xiong,Yu Luo
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:41 (2): 3083-3092
标识
DOI:10.3233/jifs-210212
摘要

Uniform Resource Location (URL) is the network unified resource location system that specifies the location and access method of resources on the Internet. At present, malicious URL has become one of the main means of network attack. How to detect malicious URL timely and accurately has become an engaging research topic. The recent proposed deep learning-based detection models can achieve high accuracy in simulations, but several problems are exposed when they are used in real applications. These models need a balanced labeled dataset for training, while collecting large numbers of the latest labeled URL samples is difficult due to the rapid generation of URL in the real application environment. In addition, in most randomly collected datasets, the number of benign URL samples and malicious URL samples is extremely unbalanced, as malicious URL samples are often rare. This paper proposes a semi-supervised learning malicious URL detection method based on generative adversarial network (GAN) to solve the above two problems. By utilizing the unlabeled URLs for model training in a semi-supervised way, the requirement of large numbers of labeled samples is weakened. And the imbalance problem can be relieved with the synthetic malicious URL generated by adversarial learning. Experimental results show that the proposed method outperforms the classic SVM and LSTM based methods. Specially, the proposed method can obtain high accuracy with insufficient labeled samples and unbalanced dataset. e.g., the proposed method can achieve 87.8% /91.9% detection accuracy when the number of labeled samples is reduced to 20% /40% of that of conventional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫晓啸完成签到,获得积分10
刚刚
沿途有你完成签到 ,获得积分10
刚刚
我是老大应助真实的火车采纳,获得10
2秒前
2秒前
Milton_z完成签到 ,获得积分0
3秒前
zz完成签到 ,获得积分10
5秒前
水水完成签到 ,获得积分10
6秒前
7秒前
Ru完成签到 ,获得积分10
8秒前
瓜兮兮CYY发布了新的文献求助10
9秒前
wuyd90发布了新的文献求助10
11秒前
ucas大菠萝发布了新的文献求助10
11秒前
11秒前
xunuo发布了新的文献求助10
14秒前
聪明夏波完成签到 ,获得积分10
16秒前
科研通AI6应助地理牛马采纳,获得10
17秒前
334niubi666完成签到 ,获得积分10
24秒前
xunuo完成签到,获得积分10
27秒前
方俊驰完成签到,获得积分10
27秒前
28秒前
wuyd90完成签到,获得积分20
29秒前
31秒前
32秒前
4466完成签到,获得积分10
33秒前
上官若男应助George采纳,获得10
33秒前
叉烧酱发布了新的文献求助10
34秒前
oddball三等中士完成签到,获得积分10
37秒前
NI完成签到 ,获得积分10
37秒前
38秒前
蓝天下载发布了新的文献求助10
42秒前
43秒前
懒洋洋发布了新的文献求助10
46秒前
Orange应助地理牛马采纳,获得10
46秒前
gg发布了新的文献求助10
47秒前
科研通AI6应助wuyd90采纳,获得10
47秒前
48秒前
小蘑菇应助蓝天下载采纳,获得10
52秒前
科研通AI6应助地理牛马采纳,获得10
53秒前
隐形曼青应助solitude采纳,获得10
54秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657709
求助须知:如何正确求助?哪些是违规求助? 4811692
关于积分的说明 15080121
捐赠科研通 4815903
什么是DOI,文献DOI怎么找? 2576964
邀请新用户注册赠送积分活动 1531997
关于科研通互助平台的介绍 1490508