Semi-supervised learning approach for malicious URL detection via adversarial learning1

计算机科学 对抗制 机器学习 人工智能 支持向量机 资源(消歧) 生成对抗网络 数据挖掘 深度学习 监督学习 人工神经网络 计算机网络
作者
Jie Ling,Su Xiong,Yu Luo
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:41 (2): 3083-3092
标识
DOI:10.3233/jifs-210212
摘要

Uniform Resource Location (URL) is the network unified resource location system that specifies the location and access method of resources on the Internet. At present, malicious URL has become one of the main means of network attack. How to detect malicious URL timely and accurately has become an engaging research topic. The recent proposed deep learning-based detection models can achieve high accuracy in simulations, but several problems are exposed when they are used in real applications. These models need a balanced labeled dataset for training, while collecting large numbers of the latest labeled URL samples is difficult due to the rapid generation of URL in the real application environment. In addition, in most randomly collected datasets, the number of benign URL samples and malicious URL samples is extremely unbalanced, as malicious URL samples are often rare. This paper proposes a semi-supervised learning malicious URL detection method based on generative adversarial network (GAN) to solve the above two problems. By utilizing the unlabeled URLs for model training in a semi-supervised way, the requirement of large numbers of labeled samples is weakened. And the imbalance problem can be relieved with the synthetic malicious URL generated by adversarial learning. Experimental results show that the proposed method outperforms the classic SVM and LSTM based methods. Specially, the proposed method can obtain high accuracy with insufficient labeled samples and unbalanced dataset. e.g., the proposed method can achieve 87.8% /91.9% detection accuracy when the number of labeled samples is reduced to 20% /40% of that of conventional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未夕晴完成签到,获得积分10
1秒前
乐乐应助still采纳,获得30
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
紫色奶萨完成签到,获得积分10
5秒前
111231发布了新的文献求助10
7秒前
bkagyin应助呆萌的u采纳,获得10
9秒前
Ding-Ding完成签到,获得积分10
10秒前
10秒前
11秒前
14秒前
是各种蕉完成签到,获得积分10
14秒前
15秒前
迪仔完成签到 ,获得积分10
15秒前
星辰大海应助飘逸皮卡丘采纳,获得10
16秒前
17秒前
yzy发布了新的文献求助10
17秒前
炸炸鱼完成签到,获得积分10
18秒前
18秒前
吃个馍馍发布了新的文献求助10
19秒前
喜羊羊发布了新的文献求助10
19秒前
尼龙niuniu完成签到,获得积分10
19秒前
19秒前
bkagyin应助沉静的往事采纳,获得10
19秒前
saaa发布了新的文献求助10
21秒前
21秒前
熬猪油完成签到 ,获得积分10
21秒前
畅快梦容完成签到,获得积分20
22秒前
英姑应助cuicui采纳,获得40
22秒前
一碗冷的粥完成签到,获得积分10
22秒前
希望天下0贩的0应助fb12000采纳,获得30
22秒前
炸炸鱼发布了新的文献求助10
22秒前
Binbin完成签到,获得积分10
23秒前
23秒前
stay发布了新的文献求助10
23秒前
完美世界应助谢嘻嘻嘻嘻采纳,获得10
25秒前
风趣的灵枫完成签到 ,获得积分10
25秒前
热电CAT完成签到,获得积分10
25秒前
研友_ngkEgn完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602790
求助须知:如何正确求助?哪些是违规求助? 4688045
关于积分的说明 14852073
捐赠科研通 4686094
什么是DOI,文献DOI怎么找? 2540255
邀请新用户注册赠送积分活动 1506881
关于科研通互助平台的介绍 1471454