Semi-supervised learning approach for malicious URL detection via adversarial learning1

计算机科学 对抗制 机器学习 人工智能 支持向量机 资源(消歧) 生成对抗网络 数据挖掘 深度学习 监督学习 人工神经网络 计算机网络
作者
Jie Ling,Su Xiong,Yu Luo
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:41 (2): 3083-3092
标识
DOI:10.3233/jifs-210212
摘要

Uniform Resource Location (URL) is the network unified resource location system that specifies the location and access method of resources on the Internet. At present, malicious URL has become one of the main means of network attack. How to detect malicious URL timely and accurately has become an engaging research topic. The recent proposed deep learning-based detection models can achieve high accuracy in simulations, but several problems are exposed when they are used in real applications. These models need a balanced labeled dataset for training, while collecting large numbers of the latest labeled URL samples is difficult due to the rapid generation of URL in the real application environment. In addition, in most randomly collected datasets, the number of benign URL samples and malicious URL samples is extremely unbalanced, as malicious URL samples are often rare. This paper proposes a semi-supervised learning malicious URL detection method based on generative adversarial network (GAN) to solve the above two problems. By utilizing the unlabeled URLs for model training in a semi-supervised way, the requirement of large numbers of labeled samples is weakened. And the imbalance problem can be relieved with the synthetic malicious URL generated by adversarial learning. Experimental results show that the proposed method outperforms the classic SVM and LSTM based methods. Specially, the proposed method can obtain high accuracy with insufficient labeled samples and unbalanced dataset. e.g., the proposed method can achieve 87.8% /91.9% detection accuracy when the number of labeled samples is reduced to 20% /40% of that of conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Li发布了新的文献求助10
1秒前
善学以致用应助Kate采纳,获得10
1秒前
KKLD发布了新的文献求助10
1秒前
gzsy完成签到 ,获得积分10
1秒前
2秒前
恋空完成签到 ,获得积分10
2秒前
ylwu2018完成签到,获得积分10
2秒前
可可完成签到,获得积分10
2秒前
王致远发布了新的文献求助10
3秒前
4秒前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
4秒前
4秒前
重要的雪莲完成签到 ,获得积分10
5秒前
5秒前
am发布了新的文献求助10
6秒前
6秒前
hooke发布了新的文献求助10
6秒前
superbanggg发布了新的文献求助200
6秒前
土豆··发布了新的文献求助10
6秒前
小王同志发布了新的文献求助20
6秒前
零下负七完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
丘比特应助机灵似狮采纳,获得10
7秒前
View完成签到,获得积分10
7秒前
8秒前
上善若水发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
qs5473完成签到,获得积分10
9秒前
View发布了新的文献求助10
10秒前
fei完成签到,获得积分10
10秒前
Emma应助科研通管家采纳,获得10
10秒前
肖肖肖完成签到 ,获得积分10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958299
求助须知:如何正确求助?哪些是违规求助? 3504528
关于积分的说明 11118735
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788506
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600