Effect of high variation in transcript expression on identifying differentially expressed genes in RNA-seq analysis.

RNA序列 生物 基因 转录组 基因表达 遗传学 基因表达谱 核糖核酸 计算生物学 参考基因 微阵列 信使核糖核酸 微阵列分析技术 基因表达调控
作者
Weitong Cui,Huaru Xue,Yifan Geng,Jing Zhang,Yajun Liang,Xuewen Tian,Qinglu Wang
出处
期刊:Annals of Human Genetics [Wiley]
卷期号:85 (6): 235-244
标识
DOI:10.1111/ahg.12441
摘要

Great efforts have been made on the algorithms that deal with RNA-seq data to enhance the accuracy and efficiency of differential expression (DE) analysis. However, no consensus has been reached on the proper threshold values of fold change and adjusted p-value for filtering differentially expressed genes (DEGs). It is generally believed that the more stringent the filtering threshold, the more reliable the result of a DE analysis. Nevertheless, by analyzing the impact of both adjusted p-value and fold change thresholds on DE analyses, with RNA-seq data obtained for three different cancer types from the Cancer Genome Atlas (TCGA) database, we found that, for a given sample size, the reproducibility of DE results became poorer when more stringent thresholds were applied. No matter which threshold level was applied, the overlap rates of DEGs were generally lower for small sample sizes than for large sample sizes. The raw read count analysis demonstrated that the transcript expression of the same gene in different samples, whether in tumor groups or in normal groups, showed high variations, which resulted in a drastic fluctuation in fold change values and adjustedp-values when different sets of samples were used. Overall, more stringent thresholds did not yield more reliable DEGs due to high variations in transcript expression; the reliability of DEGs obtained with small sample sizes was more susceptible to these variations. Therefore, less stringent thresholds are recommended for screening DEGs. Moreover, large sample sizes should be considered in RNA-seq experimental designs to reduce the interfering effect of variations in transcript expression on DEG identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WZH123456完成签到,获得积分10
1秒前
fuluyuzhe_668完成签到,获得积分10
1秒前
青耕完成签到,获得积分10
2秒前
无情的薯片完成签到,获得积分10
2秒前
yl完成签到,获得积分10
3秒前
QP34完成签到 ,获得积分10
3秒前
srx发布了新的文献求助10
3秒前
搞怪哈密瓜完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
zgrmws完成签到,获得积分0
7秒前
T_MC郭完成签到,获得积分10
8秒前
LW完成签到,获得积分10
8秒前
枕月听松完成签到,获得积分10
8秒前
unicornmed完成签到,获得积分10
9秒前
等待的谷波完成签到 ,获得积分10
9秒前
YHX完成签到,获得积分10
9秒前
Hoodie完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
Darsine完成签到,获得积分10
14秒前
xcuwlj完成签到 ,获得积分10
14秒前
动人的招牌完成签到 ,获得积分10
15秒前
江鹿柒柒完成签到,获得积分10
15秒前
16秒前
xiaoliu完成签到,获得积分10
17秒前
彩色的誉完成签到,获得积分10
18秒前
程西发布了新的文献求助20
18秒前
糊涂的元珊完成签到 ,获得积分10
18秒前
srx完成签到 ,获得积分20
18秒前
稳重乌冬面完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
ll完成签到 ,获得积分10
21秒前
王w完成签到,获得积分10
25秒前
feihua1完成签到 ,获得积分10
25秒前
无极微光应助tigger采纳,获得20
25秒前
阿鑫完成签到 ,获得积分10
26秒前
贵贵完成签到,获得积分10
27秒前
28秒前
狮子卷卷完成签到,获得积分0
29秒前
呆萌井完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765051
求助须知:如何正确求助?哪些是违规求助? 5558090
关于积分的说明 15407090
捐赠科研通 4899903
什么是DOI,文献DOI怎么找? 2636091
邀请新用户注册赠送积分活动 1584299
关于科研通互助平台的介绍 1539596