Effect of high variation in transcript expression on identifying differentially expressed genes in RNA-seq analysis.

RNA序列 生物 基因 转录组 基因表达 遗传学 基因表达谱 核糖核酸 计算生物学 参考基因 微阵列 信使核糖核酸 微阵列分析技术 基因表达调控
作者
Weitong Cui,Huaru Xue,Yifan Geng,Jing Zhang,Yajun Liang,Xuewen Tian,Qinglu Wang
出处
期刊:Annals of Human Genetics [Wiley]
卷期号:85 (6): 235-244
标识
DOI:10.1111/ahg.12441
摘要

Great efforts have been made on the algorithms that deal with RNA-seq data to enhance the accuracy and efficiency of differential expression (DE) analysis. However, no consensus has been reached on the proper threshold values of fold change and adjusted p-value for filtering differentially expressed genes (DEGs). It is generally believed that the more stringent the filtering threshold, the more reliable the result of a DE analysis. Nevertheless, by analyzing the impact of both adjusted p-value and fold change thresholds on DE analyses, with RNA-seq data obtained for three different cancer types from the Cancer Genome Atlas (TCGA) database, we found that, for a given sample size, the reproducibility of DE results became poorer when more stringent thresholds were applied. No matter which threshold level was applied, the overlap rates of DEGs were generally lower for small sample sizes than for large sample sizes. The raw read count analysis demonstrated that the transcript expression of the same gene in different samples, whether in tumor groups or in normal groups, showed high variations, which resulted in a drastic fluctuation in fold change values and adjustedp-values when different sets of samples were used. Overall, more stringent thresholds did not yield more reliable DEGs due to high variations in transcript expression; the reliability of DEGs obtained with small sample sizes was more susceptible to these variations. Therefore, less stringent thresholds are recommended for screening DEGs. Moreover, large sample sizes should be considered in RNA-seq experimental designs to reduce the interfering effect of variations in transcript expression on DEG identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heihei完成签到,获得积分10
2秒前
调皮平蓝完成签到,获得积分10
2秒前
猪鼓励完成签到,获得积分10
5秒前
零食宝完成签到 ,获得积分10
5秒前
kuyi完成签到 ,获得积分10
5秒前
粉色娇嫩完成签到 ,获得积分10
6秒前
7秒前
GG爆完成签到,获得积分10
8秒前
坚强的磬完成签到,获得积分10
12秒前
klio完成签到 ,获得积分10
13秒前
mrconli完成签到,获得积分10
14秒前
EDTA完成签到,获得积分10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
落寞的幻竹完成签到,获得积分10
15秒前
莫歌完成签到 ,获得积分10
15秒前
ldr888完成签到,获得积分10
16秒前
泽锦臻完成签到 ,获得积分10
18秒前
Hello应助chenjie采纳,获得10
20秒前
huco完成签到,获得积分10
20秒前
23秒前
maguodrgon完成签到,获得积分10
25秒前
Lotus完成签到,获得积分10
28秒前
矢思然发布了新的文献求助10
30秒前
Yanzhi完成签到,获得积分10
31秒前
deniroming完成签到,获得积分10
32秒前
楚寅完成签到 ,获得积分10
33秒前
ioio完成签到 ,获得积分10
34秒前
无限晓蓝完成签到 ,获得积分10
34秒前
积极的尔白完成签到 ,获得积分10
35秒前
杨洋完成签到 ,获得积分10
37秒前
仕子佳人完成签到,获得积分10
37秒前
38秒前
科研通AI6应助dearwang采纳,获得10
42秒前
舒适涵山完成签到,获得积分10
42秒前
小唐尼发布了新的文献求助30
43秒前
沉静凡松完成签到 ,获得积分20
49秒前
小唐尼完成签到,获得积分10
49秒前
微笑芒果完成签到 ,获得积分0
52秒前
56秒前
拼搏的亦玉完成签到,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315200
求助须知:如何正确求助?哪些是违规求助? 4457851
关于积分的说明 13868384
捐赠科研通 4347405
什么是DOI,文献DOI怎么找? 2387759
邀请新用户注册赠送积分活动 1381862
关于科研通互助平台的介绍 1351115